Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the reducing agent is in excess and a compound of higher oxidation state is formed if the oxidising agent is in excess. Justify this statement giving three illustrations.
Whenever a reaction between an oxidising agent and a reducing agent is carried out, a compound of lower oxidation state is formed if the reducing agent is in excess and a compound of higher oxidation state is formed if the oxidising agent is in excess. This can be illustrated as follows:
(i) P4 and F2 are reducing and oxidising agents respectively.
If an excess of P4 is treated with F2, then PF3 will be produced, wherein the oxidation number (O.N.) of P is +3.
P4 (excess) + F2 → P+3F3
However, if P4 is treated with an excess of F2, then PF5 will be produced, wherein the O.N. of P is +5.
P4 + F2 (excess) → P+5F5
(ii) K acts as a reducing agent, whereas O2 is an oxidising agent. If an excess of K reacts with O2, then K2O will be formed, wherein the O.N. of O is -2.
4K (excess) + O2 → 2K2O-2
However, if K reacts with an excess of O2, then K2O2 will be formed, wherein the O.N. of O is -1.
2K + O2 (excess) → K2O-12
(iii) C is a reducing agent, while O2 acts as an oxidising agent.
If an excess of C is burnt in the presence of insufficient amount of O2, then CO will be produced, wherein the O.N. of C is +2.
C (excess) + O2 → C+2O
On the other hand, if C is burnt in an excess of O2, then CO2 will be produced, wherein the O.N. of C is +4.
C + O2 (excess) → C+4O2
Balance the following redox reactions by ion – electron method :
(a) MnO4 – (aq) + I – (aq) → MnO2 (s) + I2(s) (in basic medium)
(b) MnO4 – (aq) + SO2 (g) → Mn2+ (aq) + HSO4– (aq) (in acidic solution)
(c) H2O2 (aq) + Fe 2+ (aq) → Fe3+ (aq) + H2O (l) (in acidic solution)
(d) Cr2O7 2– + SO2(g) → Cr3+ (aq) + SO42– (aq) (in acidic solution)
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What are the oxidation number of the underlined elements in each of the following and how do you rationalise your results ?
(a) KI3
(b) H2S4O6
(c) Fe3O4
(d) CH3CH2OH
(e) CH3COOH
Justify that the following reactions are redox reactions:
(a) CuO(s) + H2(g) → Cu(s) + H2O(g)
(b) Fe2O3(s) + 3CO(g) → 2Fe(s) + 3CO2(g)
(c) 4BCl3(g) + 3LiAlH4(s) → 2B2H6(g) + 3LiCl(s) + 3 AlCl3 (s)
(d) 2K(s) + F2(g) → 2K+F– (s)
(e) 4 NH3(g) + 5 O2(g) → 4NO(g) + 6H2O(g)
Balance the following equations in basic medium by ion-electron method and oxidation number methods and identify the oxidising agent and the reducing agent.
(a) P4(s) + OH – (aq) → PH3(g) + HPO2 – (aq)
(b) N2H4(l) + ClO3 – (aq) → NO(g) + Cl–(g)
(c) Cl2O7 (g) + H2O2(aq) → ClO – 2(aq) + O2(g) + H + (aq)
Fluorine reacts with ice and results in the change:
H2O(s) + F2(g) → HF(g) + HOF(g)
Justify that this reaction is a redox reaction.
Write the formulae for the following compounds:
(a) Mercury(II) chloride
(b) Nickel(II) sulphate
(c) Tin(IV) oxide
(d) Thallium(I) sulphate
(e) Iron(III) sulphate
(f) Chromium(III) oxide
While sulphur dioxide and hydrogen peroxide can act as oxidising as well as reducing agents in their reactions, ozone and nitric acid act only as oxidants. Why?
Identify the substance oxidised, reduced, oxidising agent and reducing agent for each of the following reactions:
(a) 2AgBr (s) + C6H6O2(aq) → 2Ag(s) + 2HBr (aq) + C6H4O2(aq)
(b) HCHO(l) + 2[Ag (NH3)2]+(aq) + 3OH-(aq) → 2Ag(s) + HCOO-(aq) + 4NH3(aq) + 2H2O(l)
(c) HCHO (l) + 2Cu2+(aq) + 5 OH-(aq) → Cu2O(s) + HCOO-(aq) + 3H2O(l)
(d) N2H4(l) + 2H2O2(l) → N2(g) + 4H2O(l)
(e) Pb(s) + PbO2(s) + 2H2SO4(aq) → 2PbSO4(s) + 2H2O(l)
The compound AgF2 is an unstable compound. However, if formed, the compound acts as a very strong oxidizing agent. Why?
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
If the speed of light is 3.0 × 108 ms–1, calculate the distance covered by light in 2.00 ns.
The reaction:
CH3CH2I + KOH(aq) → CH3CH2OH + KI
is classified as :
(a) electrophilic substitution
(b) nucleophilic substitution
(c) elimination
(d) addition
Comment on each of the following observations:
(a) The mobilities of the alkali metal ions in aqueous solution are Li+ < Na+ < K+ < Rb+ < Cs+
(b) Lithium is the only alkali metal to form a nitride directly.
(c) E° for M2+(aq) (where M = Ca, Sr or Ba) is nearly constant.
The hydroxides and carbonates of sodium and potassium are easily soluble in water while the corresponding salts of magnesium and calcium are sparingly soluble in water. Explain.
Describe two important uses of each of the following: (i) caustic soda (ii) sodium carbonate (iii) quicklime.
How would you explain the following observations?
(i) BeO is almost insoluble but BeSO4 in soluble in water,
(ii) BaO is soluble but BaSO4 is insoluble in water,
(iii) LiI is more soluble than KI in ethanol.
For the following bond cleavages, use curved-arrows to show the electron flow and classify each as homolysis or heterolysis. Identify reactive intermediate produced as free radical, carbocation and carbanion.
What is the concentration of sugar (C12H22O11) in mol L–1 if its 20 g are dissolved in enough water to make a final volume up to 2 L?
2.9 g of a gas at 95 °C occupied the same volume as 0.184 g of dihydrogen at 17 °C, at the same pressure. What is the molar mass of the gas?
Enthalpies of formation of CO(g), CO2(g), N2O(g) and N2O4(g) are –110, – 393, 81 and 9.7 kJ mol–1 respectively. Find the value of ΔrH for the reaction:
N2O4(g) + 3CO(g) → N2O(g) + 3CO2(g)