Give a brief description of the principles of the following techniques taking an example in each case.
(a) Crystallisation
(b) Distillation
(c) Chromatography
(a) Crystallisation
Crystallisation is one of the most commonly used techniques for the purification of solid organic compounds.
Principle: It is based on the difference in the solubilites of the compound and the impurities in a solvent. The impure compound gets dissolved in the solvent in which it is sparingly soluble at room temperature, but soluble at higher temperature. The solution is concentrated to obtain a nearly saturated solution. On cooling the solution, the pure compound crystallises out and is removed by filtration.
For example, pure aspirin is obtained by recrystallising crude aspirin. Approximately 2 - 4 g of crude aspirin is dissolved in about 20 mL of ethyl alcohol. The solution is heated (if necessary) to ensure complete dissolution. The solution is then left undisturbed until some crystals start to separate out. The crystals are then filtered and dried.
(b) Distillation
This method is used to separate volatile liquids from non-volatile impurities or a mixture of those liquids that have a sufficient difference in their boiling points.
Principle: It is based on the fact that liquids having different boiling points vapourise at different temperatures. The vapours are then cooled and the liquids so formed are collected separately.
For example, a mixture of chloroform (b.p = 334 K) and aniline (b.p = 457 K) can be separated by the method of distillation. The mixture is taken in a round bottom flask fitted with a condenser. It is then heated. Chloroform, being more volatile, vaporizes first and passes into the condenser. In the condenser, the vapours condense and chloroform trickles down. In the round bottom flask, aniline is left.
(c) Chromatography
It is one of the most useful methods for the separation and purification of organic compounds.
Principle: It is based on the difference in movement of individual components of a mixture through the stationary phase under the influence of mobile phase.
For example, a mixture of red and blue ink can be separated by chromatography. A drop of the mixture is placed on the chromatogram. The component of the ink, which is less adsorbed on the chromatogram, moves with the mobile phase while the less adsorbed component remains stationary.
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
Explain the terms Inductive and Electromeric effects. Which electron displacement effect explains the following correct orders of acidity of the carboxylic acids?
(a) Cl3CCOOH > Cl2CHCOOH > ClCH2COOH
(b) CH3CH2COOH > (CH3)2CHCOOH > (CH3)3C.COOH
Write bond line formulas for : Isopropyl alcohol, 2,3-Dimethyl butanal, Heptan-4- one.
Give condensed and bond line structural formulas and identify the functional group(s) present, if any, for :
(a) 2,2,4-Trimethylpentane
(b) 2-Hydroxy-1,2,3-propanetricarboxylic acid
(c) Hexanedial
Indicate the σ and π bonds in the following molecules :
(i) C6H6,
(ii) C6H12,
(iii) CH2Cl2,
(iv) CH2=C=CH2,
(v) CH3NO2,
(vi) HCONHCH3
Identify the reagents shown in bold in the following equations as nucleophiles or electrophiles:
(a) CH3COOH + HO- → CH3COO- + H2O
(b) CH3COCH3 + C-N → (CH3)2 C (CN) (OH)
(c) C6H5 + CH3C+O → C6H5COCH3
For the following bond cleavages, use curved-arrows to show the electron flow and classify each as homolysis or heterolysis. Identify reactive intermediate produced as free radical, carbocation and carbanion.
Which of the following represents the correct IUPAC name for the compounds concerned?
(a) 2,2-Dimethylpentane or 2-Dimethylpentane
(b) 2,4,7-Trimethyloctane or 2,5,7-Trimethyloctane
(c) 2-Chloro-4-methylpentane or 4-Chloro-2-methylpentane
(d) But-3-yn-1-ol or But-4-ol-1-yne
Draw the resonance structures for the following compounds. Show the electron shift using curved-arrow notation.
(a) C6H5OH
(b) C6H5NO2
(c) CH3CH=CHCHO
(d) C6H5–CHO
(e) C6 H5 - C+H2
(f) CH3CH = CHC+H2
Which of the following carbocation is most stable ?
How do you account for the formation of ethane during chlorination of methane?
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.
Comment on the thermodynamic stability of NO(g), given
1/2 N2(g) + 1/2 O2(g) → NO(g) ; ΔrH0 = 90 kJ mol–1
NO(g) + 1/2 O2(g) → NO2(g) : ΔrH0= –74 kJ mol–1
Give one method for industrial preparation and one for laboratory preparation of CO and CO2 each.
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Kp = 0.04 atm at 899 K for the equilibrium shown below. What is the equilibrium concentration of C2H6 when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?
C2H6 (g) ↔ C2H4 (g) + H2 (g)
Consider the compounds, BCl3 and CCl4. How will they behave with water? Justify.
The work function for caesium atom is 1.9 eV. Calculate
(a) the threshold wavelength and
(b) the threshold frequency of the radiation. If the caesium element is irradiated with a wavelength 500 nm, calculate the kinetic energy and the velocity of the ejected photoelectron.
For an isolated system, ΔU = 0, what will be ΔS?
Nitric oxide reacts with Br2 and gives nitrosyl bromide as per reaction given below:
2NO (g) + Br2 (g) ↔ 2NOBr (g)
When 0.087 mol of NO and 0.0437 mol of Br2 are mixed in a closed container at constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate equilibrium amount of NO and Br2 .
A sample of pure PCl5 was introduced into an evacuated vessel at 473 K. After equilibrium was attained, concentration of PCl5 was found to be 0.5 × 10–1 mol L–1. If value of Kc is 8.3 × 10–3, what are the concentrations of PCl3 and Cl2 at equilibrium?
PCl5 (g) ↔ PCl3 (g) + Cl2(g)