Knowing the properties of H2O and D2O, do you think that D2O can be used for drinking purposes?
Heavy water (D2O) acts as a moderator, i.e., it slows the rate of a reaction. Due to this property of D2O, it cannot be used for drinking purposes because it will slow down anabolic and catabolic reactions taking place in the body and lead to a casualty.
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Compare the structures of H2O and H2O2.
Write chemical reactions to show the amphoteric nature of water.
Discuss the principle and method of softening of hard water by synthetic ion-exchange resins.
What do you understand by the term “non-stoichiometric hydrides”? Do you expect this type of the hydrides to be formed by alkali metals? Justify your answer.
Arrange the following
(i) CaH2, BeH2 and TiH2 in order of increasing electrical conductance.
(ii) LiH, NaH and CsH in order of increasing ionic character.
(iii) H-H, D-D and F-F in order of increasing bond dissociation enthalpy.
(iv) NaH, MgH2 and H2O in order of increasing reducing property.
What is meant by 'demineralised' water and how can it be obtained?
What causes the temporary and permanent hardness of water?
How does H2O2 behave as a bleaching agent?
Why does hydrogen occur in a diatomic form rather than in a monoatomic form under normal conditions?
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
How do you account for the formation of ethane during chlorination of methane?
Find out the value of Kc for each of the following equilibria from the value of Kp:
(i) 2NOCl (g) ↔ 2NO (g) + Cl2 (g); Kp = 1.8 × 10–2 at 500 K
(ii) CaCO3 (s) ↔ CaO(s) + CO2(g); Kp = 167 at 1073 K
Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:
CH3COOH (l) + C2H5OH (l) ↔ CH3COOC2H5 (l) + H2O (l)
(i) Write the concentration ratio (reaction quotient), Qc, for this reaction (note: water is not in excess and is not a solvent in this reaction)
(ii) At 293 K, if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(iii) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at 293 K, 0.214 mol of ethyl acetate is found after sometime. Has equilibrium been reached?
Explain tropospheric pollution in 100 words.
Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base:
(a) OH–
(b) F–
(c) H+
(d) BCl3
What do you understand by
(a) inert pair effect
(b) allotropy and
(c) catenation?
Consider the compounds, BCl3 and CCl4. How will they behave with water? Justify.
Describe the method, which can be used to separate two compounds with different solubilities in a solvent S.
Calculate a) ΔG0 and b) the equilibrium constant for the formation of NO2 from NO and O2 at 298K
NO (g) + ½ O2 (g) ↔ NO2 (g)
where ΔfG0 (NO2) = 52.0 kJ/mol
ΔfG0 (NO) = 87.0 kJ/mol
ΔfG0 (O2) = 0 kJ/mol
What will be the mass of one 12C atom in g?