Arrange the following
(i) CaH2, BeH2 and TiH2 in order of increasing electrical conductance.
(ii) LiH, NaH and CsH in order of increasing ionic character.
(iii) H-H, D-D and F-F in order of increasing bond dissociation enthalpy.
(iv) NaH, MgH2 and H2O in order of increasing reducing property.
(i) The electrical conductance of a molecule depends upon its ionic or covalent nature. Ionic compounds conduct, whereas covalent compounds do not.
BeH2 is a covalent hydride. Hence, it does not conduct. CaH2 is an ionic hydride, which conducts electricity in the molten state. Titanium hydride, TiH2 is metallic in nature and conducts electricity at room temperature. Hence, the increasing order of electrical conductance is as follows:
BeH2 < CaH2 < TiH2
(ii) The ionic character of a bond is dependent on the electronegativities of the atoms involved. The higher the difference between the electronegativities of atoms, the smaller is the ionic character.
Electronegativity decreases down the group from Lithium to Caesium. Hence, the ionic character of their hydrides will increase (as shown below).
LiH < NaH < CsH
(iii) Bond dissociation energy depends upon the bond strength of a molecule, which in turn depends upon the attractive and repulsive forces present in a molecule.
The bond pair in D-D bond is more strongly attracted by the nucleus than the bond pair in H-H bond. This is because of the higher nuclear mass of D2. The stronger the attraction, the greater will be the bond strength and the higher is the bond dissociation enthalpy. Hence, the bond dissociation enthalpy of D-D is higher than H-H.
However, bond dissociation enthalpy is the minimum in the case of F-F. The bond pair experiences strong repulsion from the lone pairs present on each F-centre.
Therefore, the increasing order of bond dissociation enthalpy is as follows:
F-F < H-H < D-D
(iv) Ionic hydrides are strong reducing agents. NaH can easily donate its electrons. Hence, it is most reducing in nature.
Both, MgH2 and H2O are covalent hydrides. H2O is less reducing than MgH2 since the bond dissociation energy of H2O is higher than MgH2.
Hence, the increasing order of the reducing property is
H2O < MgH2 < NaH.
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Compare the structures of H2O and H2O2.
Write chemical reactions to show the amphoteric nature of water.
Discuss the principle and method of softening of hard water by synthetic ion-exchange resins.
What do you understand by the term “non-stoichiometric hydrides”? Do you expect this type of the hydrides to be formed by alkali metals? Justify your answer.
What is meant by 'demineralised' water and how can it be obtained?
What causes the temporary and permanent hardness of water?
How does H2O2 behave as a bleaching agent?
Why does hydrogen occur in a diatomic form rather than in a monoatomic form under normal conditions?
Describe the bulk preparation of dihydrogen by electrolytic method. What is the role of an electrolyte in this process?
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
H3PO3 can be represented by structures 1 and 2 shown below. Can these two structures be taken as the canonical forms of the resonance hybrid representing H3PO3? If not, give reasons for the same.
What is the lowest value of n that allows g orbitals to exist?
For the process to occur under adiabatic conditions, the correct condition is:
(i) ΔT = 0
(ii) Δp = 0
(iii) q = 0
(iv) w = 0
The degree of ionization of a 0.1M bromoacetic acid solution is 0.132. Calculate the pH of the solution and the pKa of bromoacetic acid.
What does atomic radius and ionic radius really mean to you?
The pH of 0.1M solution of cyanic acid (HCNO) is 2.34. Calculate the ionization constant of the acid and its degree of ionization in the solution.
It has been found that the pH of a 0.01M solution of an organic acid is 4.15. Calculate the concentration of the anion, the ionization constant of the acid and its pKa.
How would you explain the lower atomic radius of Ga as compared to Al?
In terms of Charles’ law explain why –273°C is the lowest possible temperature.
Arrange the following set of compounds in order of their decreasing relative reactivity with an electrophile, E+
(a) Chlorobenzene, 2,4-dinitrochlorobenzene, p-nitrochlorobenzene
(b) Toluene, p-H3C-C6H4-NO2, p-O2N-C6H4-NO2.