Write the names of isotopes of hydrogen. What is the mass ratio of these isotopes?
Hydrogen has three isotopes.
They are:
1. Protium, 1H1,
2. Deuterium, 2H1 or D, and
3. Tritium, 3H1 or T
The mass ratio of protium, deuterium and tritium is 1:2:3.
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Compare the structures of H2O and H2O2.
Write chemical reactions to show the amphoteric nature of water.
Discuss the principle and method of softening of hard water by synthetic ion-exchange resins.
Arrange the following
(i) CaH2, BeH2 and TiH2 in order of increasing electrical conductance.
(ii) LiH, NaH and CsH in order of increasing ionic character.
(iii) H-H, D-D and F-F in order of increasing bond dissociation enthalpy.
(iv) NaH, MgH2 and H2O in order of increasing reducing property.
What do you understand by the term “non-stoichiometric hydrides”? Do you expect this type of the hydrides to be formed by alkali metals? Justify your answer.
What is meant by 'demineralised' water and how can it be obtained?
What causes the temporary and permanent hardness of water?
How does H2O2 behave as a bleaching agent?
Why does hydrogen occur in a diatomic form rather than in a monoatomic form under normal conditions?
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
A reaction, A + B → C + D + q is found to have a positive entropy change. The reaction will be
(i) possible at high temperature
(ii) possible only at low temperature
(iii) not possible at any temperature
(iv) possible at any temperature
The ionization constant of dimethylamine is 5.4 x 10-4. Calculate its degree of ionization in its 0.02 M solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH?
A vessel of 120 mL capacity contains a certain amount of gas at 35 °C and 1.2 bar pressure. The gas is transferred to another vessel of volume 180 mL at 35 °C. What would be its pressure?
The pH of a sample of vinegar is 3.76. Calculate the concentration of hydrogen ion in it.
Write the significance of a plus and a minus sign shown in representing the orbitals.
For the reaction, 2Cl(g) → Cl2(g),what are the signs of ΔH and ΔS ?
Equilibrium constant, Kc for the reaction
N2 (g) + 3H2 (g) ↔ 2NH3 (g) at 500 K is 0.061
At a particular time, the analysis shows that composition of the reaction mixture is 3.0 mol L–1 N2, 2.0 mol L–1 H2 and 0.5 mol L–1 NH3.
Is the reaction at equilibrium?
If not in which direction does the reaction tend to proceed to reach equilibrium?
Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.
What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was 0.78 M ?
2ICl (g) ↔ I2 (g) + Cl2 (g); Kc = 0.14
Enthalpy of combustion of carbon to CO2 is -393.5 kJ mol-1. Calculate the heat released upon formation of 35.2 g of CO2 from carbon and dioxygen gas.