The first ionization constant of H2S is 9.1 × 10–8. Calculate the concentration of HS– ion in its 0.1M solution. How will this concentration be affected if the solution is 0.1M in HCl also ? If the second dissociation constant of H2S is 1.2 × 10–13, calculate the concentration of S2– under both conditions.
(i) To calculate the concentration of HS- ion:
Case I (in the absence of HCl):
Let the concentration of HS- be x M.
H2S ↔ H+ + HS-
Ci 0.1 0 0
Cf 0.1-x x x
Then Ka1 = [H+ ] [ HS-] / H2S
9.1 × 10–8 = xx / 0.1-x
(9.1 × 10–8) (0.1-x) = x2
Taking 0.1 - x M ; 0.1M, we have
(9.1 × 10–8) (0.1) = x2
9.1 x 10-9 = x2
Case II (in the presence of HCl):
In the presence of 0.1 M of HCl, let [HS-] be y M.
Then, H2S ↔ H+ + HS-
Ci 0.1 0 0
Cf 0.1-y y y
Also, HCI ↔ H+ + CI-
0.1 0.1
Now, Ka1 = [H+ ] [ HS-] / H2S
Ka1 = [y] [0.1+y] / [0.1-y]
9.1 × 10–8 = y x 0.1 / 0.1 (∵ 0.1-y; 0.1M) (and 0.1+y; 0.1M)
9.1 × 10–8 = y
⇒ [ HS-] = 9.1 × 10–8
(ii) To calculate the concentration of [S2-]:
Case I (in the absence of 0.1 M HCl):
HS- ↔ H+ + S2-
HS- = 9.54 x 10-5 M (From first ionization, case I)
Let S2- be X.
Also, [H+] = 9.54 x 10-5 M (From first ionization, case I)
Ka2 = (9.54 x 10-5) (X) / (9.54 x 10-5)
1.2x10-13 = X = S2-
Case II (in the presence of 0.1 M HCl):
Again, let the concentration of HS- be X' M.
Assuming complete dissociation, calculate the pH of the following solutions:
(a) 0.003 M HCl
(b) 0.005 M NaOH
(c) 0.002 M HBr
(d) 0.002 M KOH
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
The pH of a sample of vinegar is 3.76. Calculate the concentration of hydrogen ion in it.
The ionization constant of acetic acid is 1.74 x 10-5. Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH.
Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
CH4 (g) + H2O (g) ↔ CO (g) + 3H2 (g)
(a) Write as expression for Kp for the above reaction.
(b) How will the values of Kp and composition of equilibrium mixture be affected by
(i) increasing the pressure
(ii) increasing the temperature
(iii) using a catalyst ?
At 700 K, equilibrium constant for the reaction:
H2 (g) + I2 (g) ↔ 2HI (g)
is 54.8. If 0.5 mol L–1 of HI(g) is present at equilibrium at 700 K, what are the concentration of H2(g) and I2(g) assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700K?
At 473 K, equilibrium constant Kc for decomposition of phosphorus pentachloride, PCl5 is 8.3 ×10-3. If decomposition is depicted as,
PCl5 (g) ↔ PCl3 (g) + Cl2 (g) ΔrH0 = 124.0 kJ mol–1
(a) write an expression for Kc for the reaction.
(b) what is the value of Kc for the reverse reaction at the same temperature ?
(c) what would be the effect on Kc if (i) more PCl5 is added (ii) pressure is increased (iii) the temperature is increased ?
Find out the value of Kc for each of the following equilibria from the value of Kp:
(i) 2NOCl (g) ↔ 2NO (g) + Cl2 (g); Kp = 1.8 × 10–2 at 500 K
(ii) CaCO3 (s) ↔ CaO(s) + CO2(g); Kp = 167 at 1073 K
Ionic product of water at 310 K is 2.7 x 10-14. What is the pH of neutral water at this temperature?
Reaction between N2 and O2– takes place as follows:
2N2 (g) + O2 (g) ↔ 2N2O (g)
If a mixture of 0.482 mol N2 and 0.933 mol of O2 is placed in a 10 L reaction vessel and allowed to form N2O at a temperature for which Kc = 2.0 × 10–37, determine the composition of equilibrium mixture.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Which hybrid orbitals are used by carbon atoms in the following molecules?
(a)CH3–CH3;
(b) CH3–CH=CH2;
(c) CH3-CH2-OH;
(d) CH3-CHO
(e) CH3COOH
Draw diagrams showing the formation of a double bond and a triple bond between carbon atoms in C2H4 and C2H2 molecules.
What will be the pressure exerted by a mixture of 3.2 g of methane and 4.4 g of carbon dioxide contained in a 9 dm3 flask at 27 °C ?
Justify giving reactions that among halogens, fluorine is the best oxidant and among hydrohalic compounds, hydroiodic acid is the best reductant.
For the process to occur under adiabatic conditions, the correct condition is:
(i) ΔT = 0
(ii) Δp = 0
(iii) q = 0
(iv) w = 0
If the density of methanol is 0.793 kg L–1, what is its volume needed for making 2.5 L of its 0.25 M solution?
What are allotropes? Sketch the structure of two allotropes of carbon namely diamond and graphite. What is the impact of structure on physical properties of two allotropes?
What characteristics do you expect from an electron-deficient hydride with respect to its structure and chemical reactions?
Arrange the following metals in the order in which they displace each other from the solution of their salts.
Al, Cu, Fe, Mg and Zn.
Calcium carbonate reacts with aqueous HCl to give CaCl2 and CO2 according to the reaction,
CaCO3(s) + 2 HCl(aq) → CaCl2(aq) + CO2(g) + H2O(l)
What mass of CaCO3 is required to react completely with 25 mL of 0.75 M HCl?