The first ionization constant of H2S is 9.1 × 10–8. Calculate the concentration of HS– ion in its 0.1M solution. How will this concentration be affected if the solution is 0.1M in HCl also ? If the second dissociation constant of H2S is 1.2 × 10–13, calculate the concentration of S2– under both conditions.
(i) To calculate the concentration of HS- ion:
Case I (in the absence of HCl):
Let the concentration of HS- be x M.
H2S ↔ H+ + HS-
Ci 0.1 0 0
Cf 0.1-x x x
Then Ka1 = [H+ ] [ HS-] / H2S
9.1 × 10–8 = xx / 0.1-x
(9.1 × 10–8) (0.1-x) = x2
Taking 0.1 - x M ; 0.1M, we have
(9.1 × 10–8) (0.1) = x2
9.1 x 10-9 = x2
Case II (in the presence of HCl):
In the presence of 0.1 M of HCl, let [HS-] be y M.
Then, H2S ↔ H+ + HS-
Ci 0.1 0 0
Cf 0.1-y y y
Also, HCI ↔ H+ + CI-
0.1 0.1
Now, Ka1 = [H+ ] [ HS-] / H2S
Ka1 = [y] [0.1+y] / [0.1-y]
9.1 × 10–8 = y x 0.1 / 0.1 (∵ 0.1-y; 0.1M) (and 0.1+y; 0.1M)
9.1 × 10–8 = y
⇒ [ HS-] = 9.1 × 10–8
(ii) To calculate the concentration of [S2-]:
Case I (in the absence of 0.1 M HCl):
HS- ↔ H+ + S2-
HS- = 9.54 x 10-5 M (From first ionization, case I)
Let S2- be X.
Also, [H+] = 9.54 x 10-5 M (From first ionization, case I)
Ka2 = (9.54 x 10-5) (X) / (9.54 x 10-5)
1.2x10-13 = X = S2-
Case II (in the presence of 0.1 M HCl):
Again, let the concentration of HS- be X' M.
Assuming complete dissociation, calculate the pH of the following solutions:
(a) 0.003 M HCl
(b) 0.005 M NaOH
(c) 0.002 M HBr
(d) 0.002 M KOH
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
The pH of a sample of vinegar is 3.76. Calculate the concentration of hydrogen ion in it.
The ionization constant of acetic acid is 1.74 x 10-5. Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH.
Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
CH4 (g) + H2O (g) ↔ CO (g) + 3H2 (g)
(a) Write as expression for Kp for the above reaction.
(b) How will the values of Kp and composition of equilibrium mixture be affected by
(i) increasing the pressure
(ii) increasing the temperature
(iii) using a catalyst ?
At 700 K, equilibrium constant for the reaction:
H2 (g) + I2 (g) ↔ 2HI (g)
is 54.8. If 0.5 mol L–1 of HI(g) is present at equilibrium at 700 K, what are the concentration of H2(g) and I2(g) assuming that we initially started with HI(g) and allowed it to reach equilibrium at 700K?
At 473 K, equilibrium constant Kc for decomposition of phosphorus pentachloride, PCl5 is 8.3 ×10-3. If decomposition is depicted as,
PCl5 (g) ↔ PCl3 (g) + Cl2 (g) ΔrH0 = 124.0 kJ mol–1
(a) write an expression for Kc for the reaction.
(b) what is the value of Kc for the reverse reaction at the same temperature ?
(c) what would be the effect on Kc if (i) more PCl5 is added (ii) pressure is increased (iii) the temperature is increased ?
Find out the value of Kc for each of the following equilibria from the value of Kp:
(i) 2NOCl (g) ↔ 2NO (g) + Cl2 (g); Kp = 1.8 × 10–2 at 500 K
(ii) CaCO3 (s) ↔ CaO(s) + CO2(g); Kp = 167 at 1073 K
Ionic product of water at 310 K is 2.7 x 10-14. What is the pH of neutral water at this temperature?
Reaction between N2 and O2– takes place as follows:
2N2 (g) + O2 (g) ↔ 2N2O (g)
If a mixture of 0.482 mol N2 and 0.933 mol of O2 is placed in a 10 L reaction vessel and allowed to form N2O at a temperature for which Kc = 2.0 × 10–37, determine the composition of equilibrium mixture.
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Explain the formation of a chemical bond.
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Describe the method, which can be used to separate two compounds with different solubilities in a solvent S.
Calculate the number of atoms in each of the following
(i) 52 moles of Ar
(ii) 52 u of He
(iii) 52 g of He.
A sample of drinking water was found to be severely contaminated with chloroform, CHCl3, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).
(i) Express this in percent by mass.
(ii) Determine the molality of chloroform in the water sample.
(i) The energy associated with the first orbit in the hydrogen atom is –2.18 × 10–18 J atom–1. What is the energy associated with the fifth orbit?
(ii) Calculate the radius of Bohr’s fifth orbit for hydrogen atom.
Give the IUPAC names of the following compounds:
Round up the following upto three significant figures:
(i) 34.216
(ii) 10.4107
(iii) 0.04597
(iv) 2808
What will be the mass of one 12C atom in g?
Discuss the principle of estimation of halogens, sulphur and phosphorus present in an organic compound.
What will be the pressure of the gaseous mixture when 0.5 L of H2 at 0.8 bar and 2.0 L of dioxygen at 0.7 bar are introduced in a 1L vessel at 27°C?
Why does the following reaction occur ?
XeO4– 6(aq) + 2F – (aq) + 6H + (aq) → XeO3(g) + F2(g) + 3H2O(l)
What conclusion about the compound Na4XeO6 (of which XeO4– 6 is a part) can be drawn from the reaction.