Write the significance of a plus and a minus sign shown in representing the orbitals.
The orbital is the maximum probability of finding an electron around the nucleus. This probability is measured in terms of wave function. The wave function can have a positive or negative values. Therefore for defining the wave function, plus sign is used for positive wave function while a minus sign is used for negative wave function of an orbital.
What is meant by the term bond order? Calculate the bond order of: N2, O2,O2+,and O2-.
Use molecular orbital theory to explain why the Be2 molecule does not exist.
Explain the formation of H2 molecule on the basis of valence bond theory.
Compare the relative stability of the following species and indicate their magnetic properties:
O2,O2+,O2- (superoxide), O22-(peroxide)
Describe the hybridisation in case of PCl5. Why are the axial bonds longer as compared to equatorial bonds?
Which out of NH3 and NF3 has higher dipole moment and why?
Explain why BeH2 molecule has a zero dipole moment although the Be–H bonds are polar.
Discuss the shape of the following molecules using the VSEPR model:
BeCl2, BCl3, SiCl4, AsF5, H2S, PH3
Write Lewis symbols for the following atoms and ions:
S and S2–; Al and Al3+; H and H–
Draw the Lewis structures for the following molecules and ions: H2S, SiCl4, BeF2, , HCOOH
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Explain the terms Inductive and Electromeric effects. Which electron displacement effect explains the following correct orders of acidity of the carboxylic acids?
(a) Cl3CCOOH > Cl2CHCOOH > ClCH2COOH
(b) CH3CH2COOH > (CH3)2CHCOOH > (CH3)3C.COOH
Differentiate between the principle of estimation of nitrogen in an organic compound by
(i) Dumas method and
(ii) Kjeldahl's method.
In the alkane H3C – CH2 – C(CH3)2 – CH2 – CH(CH3)2, identify 1°,2°,3° carbon atoms and give the number of H atoms bonded to each one of these.
What are the harmful effects of photochemical smog and how can they be controlled?
The ionization constant of HF, HCOOH and HCN at 298K are 6.8 × 10–4, 1.8 × 10–4 and 4.8 × 10–9 respectively.
Calculate the ionization constants of the corresponding conjugate base.
The best and latest technique for isolation, purification and separation of organic compounds is:
(a) Crystallisation
(b) Distillation
(c) Sublimation
(d) Chromatography
Why are lithium salts commonly hydrated and those of the other alkali metal ions usually anhydrous?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
Calculate a) ΔG0 and b) the equilibrium constant for the formation of NO2 from NO and O2 at 298K
NO (g) + ½ O2 (g) ↔ NO2 (g)
where ΔfG0 (NO2) = 52.0 kJ/mol
ΔfG0 (NO) = 87.0 kJ/mol
ΔfG0 (O2) = 0 kJ/mol
Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:
CH3COOH (l) + C2H5OH (l) ↔ CH3COOC2H5 (l) + H2O (l)
(i) Write the concentration ratio (reaction quotient), Qc, for this reaction (note: water is not in excess and is not a solvent in this reaction)
(ii) At 293 K, if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(iii) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at 293 K, 0.214 mol of ethyl acetate is found after sometime. Has equilibrium been reached?