Although both CO2 and H2O are triatomic molecules, the shape of H2O molecule is bent while that of CO2 is linear. Explain this on the basis of dipole moment.
Dipole moment is the product of the magnitude of the positive or negative charge (q) and the distance (d) between the charges, i.e.
μ = q x d.
The SI unit is coulomb metre. The molecule with symmetrical and linear geometries have zero dipole moment because they are vector in nature and the dipole of different bonds cancel with one another. CO2 is symmetrical and has dipole moment 0. Therefore it will have a linear shape with bond angle 180°.
Resultant μ = 0 D
H2O is a unsymmetrical molecule and bent geometries, the geometries have specific dipole moment (1.84D) because the bond polarities do not cancel each other. Therefore H2O will have a bent structure with bond angle 104°.
What is meant by the term bond order? Calculate the bond order of: N2, O2,O2+,and O2-.
Use molecular orbital theory to explain why the Be2 molecule does not exist.
Explain the formation of H2 molecule on the basis of valence bond theory.
Compare the relative stability of the following species and indicate their magnetic properties:
O2,O2+,O2- (superoxide), O22-(peroxide)
Describe the hybridisation in case of PCl5. Why are the axial bonds longer as compared to equatorial bonds?
Which out of NH3 and NF3 has higher dipole moment and why?
Explain why BeH2 molecule has a zero dipole moment although the Be–H bonds are polar.
Discuss the shape of the following molecules using the VSEPR model:
BeCl2, BCl3, SiCl4, AsF5, H2S, PH3
Write Lewis symbols for the following atoms and ions:
S and S2–; Al and Al3+; H and H–
Draw the Lewis structures for the following molecules and ions: H2S, SiCl4, BeF2, , HCOOH
How do you account for the formation of ethane during chlorination of methane?
What are hybridisation states of each carbon atom in the following compounds ?
(i) CH2=C=O,
(ii) CH3CH=CH2,
(iii) (CH3)2CO,
(iv) CH2=CHCN,
(v) C6H6
What will be the minimum pressure required to compress 500 dm3 of air at 1 bar to 200 dm3 at 30°C?
What are the common physical and chemical features of alkali metals?
Calculate the molecular mass of the following:
(i) H2O
(ii) CO2
(iii) CH4
Assign oxidation number to the underlined elements in each of the following species:
(a) NaH2PO4
(b) NaHSO4
(c) H4P2O7
(d) K2MnO4
(e) CaO2
(f) NaBH4
(g) H2S2O7
(h) KAl(SO4)2.12 H2O
What is the basic theme of organisation in the periodic table?
Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine heat changes
(ii) whose value is independent of path
(iii) used to determine pressure volume work
(iv) whose value depends on temperature only.
A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
Suggest a reason as to why CO is poisonous.
What is meant by the conjugate acid-base pair? Find the conjugate acid/base for the following species:
HNO2, CN– , HClO4, F –, OH–, CO2–3 and S-
The ionization constant of dimethylamine is 5.4 x 10-4. Calculate its degree of ionization in its 0.02 M solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH?
Describe the bulk preparation of dihydrogen by electrolytic method. What is the role of an electrolyte in this process?
For the following bond cleavages, use curved-arrows to show the electron flow and classify each as homolysis or heterolysis. Identify reactive intermediate produced as free radical, carbocation and carbanion.
Justify the position of hydrogen in the periodic table on the basis of its electronic configuration.
How would you explain the following observations?
(i) BeO is almost insoluble but BeSO4 in soluble in water,
(ii) BaO is soluble but BaSO4 is insoluble in water,
(iii) LiI is more soluble than KI in ethanol.
Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:
CH3COOH (l) + C2H5OH (l) ↔ CH3COOC2H5 (l) + H2O (l)
(i) Write the concentration ratio (reaction quotient), Qc, for this reaction (note: water is not in excess and is not a solvent in this reaction)
(ii) At 293 K, if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(iii) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at 293 K, 0.214 mol of ethyl acetate is found after sometime. Has equilibrium been reached?
Compare the alkali metals and alkaline earth metals with respect to
(i) ionization enthalpy
(ii) basicity of oxides and
(iii) solubility of hydroxides.
Comment on the thermodynamic stability of NO(g), given
1/2 N2(g) + 1/2 O2(g) → NO(g) ; ΔrH0 = 90 kJ mol–1
NO(g) + 1/2 O2(g) → NO2(g) : ΔrH0= –74 kJ mol–1
ninte thantha
Thank you
Tq
Thank you so much
Thank you so much
Very very nice explainatio are given
Help full
Nice and helpful
thanks i got my doubt cleared your website is really good
Hi Sana, We are not getting your point but still you can ask your query through the same comment box or you can mail us too. Team saralstudy