Glucose or sucrose are soluble in water but cyclohexane or benzene (simple six membered ring compounds) are insoluble in water. Explain.
For any compound to be water soluble, it should develop dipoles (partial negative and partial positive charges) at the two ends of compound. The development of charges results in the formation of hydrogen bond between the water molecule and the compound. The development of charges at two ends is due to the difference in the electronegativity between two atoms. The atom with higher electronegativity will acquire negative charge while the atom with lower electronegativity will acquire positive charge. A glucose molecule contains five –OH (highly electronegative) groups while a sucrose molecule contains eight −OH groups. Thus, glucose and sucrose undergo extensive H-bonding with water. Hence, these are soluble in water.
But cyclohexane and benzene do not contain −OH groups. They contain only carbon and hydrogen atoms, as a result the dipole developed is very weak in nature and hence the hydrogen bond formed is not strong. Hence, they cannot undergo H-bonding with water and thus are insoluble in water.
What happens when D-glucose is treated with the following reagents? (i)HI (ii)Bromine water (iii)HNO3
How do you explain the absence of aldehyde group in the pentaacetate of D-glucose?
The melting points and solubility in water of amino acids are generally higher than that of the corresponding halo acids. Explain.
Define the following as related to proteins
(i) Peptide linkage (ii) Primary structure (iii) Denaturation.
What products would be formed when a nucleotide from DNA containing thymine is hydrolysed?
The two strands in DNA are not identical but are complementary. Explain.
Enumerate the reactions of D-glucose which cannot be explained by its open chain structure.
What are nucleic acids? Mention their two important functions.
Where does the water present in the egg go after boiling the egg?
How do you explain the amphoteric behaviour of amino acids?
For the reaction R → P, the concentration of a reactant changes from 0.03 M to 0.02 M in 25 minutes. Calculate the average rate of reaction using units of time both in minutes and seconds.
Write the formulas for the following coordination compounds:
(i) Tetraamminediaquacobalt (III) chloride
(ii) Potassium tetracyanonickelate(II)
(iii) Tris(ethane-1,2-diamine) chromium(III) chloride
(iv) Amminebromidochloridonitrito-N-platinate(II)
(v) Dichloridobis(ethane-1,2-diamine)platinum(IV) nitrate
(vi) Iron(III) hexacyanoferrate(II)
(i) Write structures of different isomeric amines corresponding to the molecular formula, C4H11N
(ii) Write IUPAC names of all the isomers.
(iii) What type of isomerism is exhibited by different pairs of amines?
Why are solids rigid?
Write any two characteristics of Chemisorption.
Write the structures of the following compounds.
(i) α-Methoxypropionaldehyde
(ii) 3-Hydroxybutanal
(iii) 2-Hydroxycyclopentane carbaldehyde
(iv) 4-Oxopentanal
(v) Di-sec-butyl ketone
(vi) 4-Fluoroacetophenone
Which of the ores mentioned in Table 6.1 can be concentrated by magnetic separation method?
Why are pentahalides more covalent than trihalides?
Silver atom has completely filled d orbitals (4d10) in its ground state. How can you say that it is a transition element?
Write structures of the following compounds:
(i) 2-Chloro-3-methylpentane
(ii) 1-Chloro-4-ethylcyclohexane
(iii) 4-tert. Butyl-3-iodoheptane
(iv) 1,4-Dibromobut-2-ene
(v) 1-Bromo-4-sec. butyl-2-methylbenzene
Why does NH3 form hydrogen bond but PH3 does not?
Give evidence that [Co(NH3)5Cl]SO4 and [Co(NH3)5SO4]Cl are ionization isomers.
Give the oxidation state, d-orbital occupation and coordination number of the central metal ion in the following complexes:
(i) K3[Co(C2O4)3]
(ii) cis-[Cr(en)2Cl2]Cl
(iii) (NH4)2[CoF4]
(iv) [Mn(H2O)6]SO4
Draw the structures of optical isomers of:
(i) [Cr(C2O4)3]3-
(ii) [PtCl2(en)2]2+
(iii) [Cr(NH3)2Cl2(en)]+
How the following conversions can be carried out?
(i) Propene to propan-1-ol
(ii) Ethanol to but-1-yne
(iii) 1-Bromopropane to 2-bromopropane
(iv) Toluene to benzyl alcohol
(v) Benzene to 4-bromonitrobenzene
(vi) Benzyl alcohol to 2-phenylethanoic acid
(vii) Ethanol to propanenitrile
(viii) Aniline to chlorobenzene
(ix) 2-Chlorobutane to 3, 4-dimethylhexane
(x) 2-Methyl-1-propene to 2-chloro-2-methylpropane
(xi) Ethyl chloride to propanoic acid
(xii) But-1-ene to n-butyliodide
(xiii) 2-Chloropropane to 1-propanol
(xiv) Isopropyl alcohol to iodoform
(xv) Chlorobenzene to p-nitrophenol
(xvi) 2-Bromopropane to 1-bromopropane
(xvii) Chloroethane to butane
(xviii) Benzene to diphenyl
(xix) tert-Butyl bromide to isobutyl bromide
(xx) Aniline to phenylisocyanide
Henry's law constant for CO2 in water is 1.67 x 108Pa at 298 K. Calculate the quantity of CO2in 500 mL of soda water when packed under 2.5 atm CO2 pressure at 298 K.
Sea is the greatest source of some halogens. Comment.
How are the following conversions carried out?
(i) Propene → Propan-2-ol
(ii) Benzyl chloride → Benzyl alcohol
(iii) Ethyl magnesium chloride → Propan-1-ol.
(iv) Methyl magnesium bromide → 2-Methylpropan-2-ol.
Time required to decompose SO2Cl2to half of its initial amount is 60 minutes. If the decomposition is a first order reaction, calculate the rate constant of the reaction.
Complete the following reactions:
(i) C2H4 + O2 →
(ii) 4Al + 3O2 →
Perfect answer......thank you!
Nice explanation
Useful answer