-
Q1 Find the principal value of \begin{align} sin^{-1}\left(-\frac{1}{2}\right)\end{align} Ans: \begin{align} sin^{-1}\left(-\frac{1}{2}\right)=y \;\;Then\;\; sin y = -\frac{1}{2} = -sin\left(\frac{\pi}{6}\right)= sin\left(-\frac{\pi}{6}\right)\end{align}
We know that the range of the principal value branch of sin−1 is
\begin{align} \left[-\frac{\pi}{2},\frac{\pi}{2}\right] and \;\;sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}\end{align}
Therefore, the principal value of
\begin{align} sin^{-1}\left(-\frac{1}{2}\right) is -\frac{\pi}{6}\end{align}
Q2 Find the principal value of \begin{align} cos^{-1}\left(\frac{\sqrt3}{2}\right)\end{align} Ans: \begin{align} Let\;\; cos^{-1}\left(\frac{\sqrt3}{2}\right)=y, \;\;Then,\;\; cos y = \frac{\sqrt3}{2} = cos\left(\frac{\pi}{6}\right)\end{align}
We know that the range of the principal value branch of cos−1 is
\begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{\pi}{6}\right) = \frac{\sqrt3}{2}\end{align}
Therefore, the principal value of
\begin{align} cos^{-1}\left(\frac{\sqrt3}{2}\right) is \frac{\pi}{6}\end{align}
Q3 Find the principal value of \begin{align} cosec^{-1}\left({2}\right)\end{align} Ans: \begin{align} Let \;\; cosec^{-1}\left({2}\right)=y \;\;Then\;\; cosec y = 2 = cosec\left(\frac{\pi}{6}\right)\end{align}
We know that the range of the principal value branch of cosec−1 is\begin{align} \left[-\frac{\pi}{2},\frac{\pi}{2}\right] - \left(0 \right). \end{align}Therefore, the principal value of\begin{align} \frac{\pi}{6}\end{align}Q4 Find the principal value of \begin{align} tan^{-1}\left(-\sqrt3\right)\end{align} Ans: \begin{align} Let \;\; tan^{-1}\left(-\sqrt3\right)=y \;\;Then\;\; tan y = -\sqrt3 = -tan\left(\frac{\pi}{3}\right)= tan\left(-\frac{\pi}{3}\right)\end{align}
We know that the range of the principal value branch of tan−1 is
\begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right) and \;\;tan\left(-\frac{\pi}{3}\right) = -\sqrt3\end{align}
Therefore, the principal value of\begin{align} tan^{-1}\left(-\sqrt 3\right) is -\frac{\pi}{3}\end{align}Q5 Find the principal value of \begin{align} cos^{-1}\left(-\frac{1}{2}\right)\end{align} Ans: \begin{align} Let\;\; cos^{-1}\left(-\frac{1}{2}\right)=y, \;\;Then,\;\; cos y = -\frac{1}{2} = - cos\left(\frac{\pi}{3}\right)=cos\left(\pi - \frac{\pi}{3}\right) = cos\left(\frac{2\pi}{3}\right)\end{align}
We know that the range of the principal value branch of cos−1 is
\begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}\end{align}
Therefore, the principal value of
\begin{align} cos^{-1}\left(-\frac{1}{2}\right) is \frac{2\pi}{3}\end{align}
Q6 Find the principal value of \begin{align} tan^{-1}\left(-1\right)\end{align} Ans: \begin{align} Let \;\; tan^{-1}\left(-1\right)=y. \;\;Then,\;\; tan y = -1 = -tan\left(\frac{\pi}{4}\right)= tan\left(-\frac{\pi}{4}\right)\end{align}
We know that the range of the principal value branch of tan−1 is
\begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right) and \;\;tan\left(-\frac{\pi}{4}\right) = - 1\end{align}
Therefore, the principal value of
\begin{align} tan^{-1}\left(- 1\right) is -\frac{\pi}{4}\end{align}
Q7 Find the principal value of \begin{align} sec^{-1}\left(\frac{2}{\sqrt3}\right)\end{align} Ans: \begin{align} Let \;\; sec^{-1}\left(\frac{2}{\sqrt3}\right)=y \;\;Then\;\; sec y = \frac{2}{\sqrt3} = sec\left(\frac{\pi}{6}\right)\end{align}
We know that the range of the principal value branch of sec−1 is
\begin{align} \left[0,\pi\right] - \left(\frac{\pi}{2}\right) and \;\;sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt3}\end{align}
Therefore, the principal value of
\begin{align} sec^{-1}\left(\frac{2}{\sqrt3}\right) is \frac{\pi}{6}\end{align}
Q8 Find the principal value of \begin{align} cot^{-1}\left(\sqrt3\right)\end{align} Ans: \begin{align} Let \;\; cot^{-1}\left(\sqrt3\right)=y. \;\;Then,\;\; cot y = \sqrt3 = cot\left(\frac{\pi}{6}\right).\end{align}
We know that the range of the principal value branch of cot−1 is
\begin{align} \left(0, \pi\right) and \;\;cot\left(\frac{\pi}{6}\right) = \sqrt3.\end{align}
Therefore, the principal value of\begin{align} cot^{-1}\left(\sqrt 3\right) is \frac{\pi}{6}\end{align}Q9 Find the principal value of \begin{align} cos^{-1}\left(-\frac{1}{\sqrt2}\right)\end{align} Ans: \begin{align} Let\;\; cos^{-1}\left(-\frac{1}{\sqrt2}\right)=y, \;\;Then,\;\; cos y = -\frac{1}{\sqrt2} = - cos\left(\frac{\pi}{4}\right)=cos\left(\pi - \frac{\pi}{4}\right) = cos\left(\frac{3\pi}{4}\right)\end{align}
We know that the range of the principal value branch of cos−1 is
\begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt2}\end{align}
Therefore, the principal value of
\begin{align} cos^{-1}\left(-\frac{1}{\sqrt2}\right) is \frac{3\pi}{4}\end{align}
Q10 Find the principal value of \begin{align} cosec^{-1}\left({-\sqrt2}\right)\end{align} Ans: \begin{align} Let \;\; cosec^{-1}\left({-\sqrt2}\right)=y \;\;Then\;\; cosec y = -{\sqrt2} =- cosec\left(\frac{\pi}{4}\right) = cosec\left(-\frac{\pi}{4}\right)\end{align}
We know that the range of the principal value branch of cosec−1 is
\begin{align} \left[-\frac{\pi}{2},\frac{\pi}{2}\right] - \left(0 \right) and \;\;cosec\left(-\frac{\pi}{4}\right) = -\sqrt2.\end{align}
Therefore, the principal value of
\begin{align} cosec^{-1}\left(-\sqrt2\right) is -\frac{\pi}{4}\end{align}
Q11 Find the principal value of \begin{align} tan^{-1} (1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)\end{align} Ans: \begin{align} Let \;\; tan^{-1}(1)=x. \;\;Then\;\; tan x = 1 = tan\left(\frac{\pi}{4}\right).\end{align}
\begin{align} \therefore tan^{-1}(1)=tan\left(\frac{\pi}{4}\right)\end{align}
\begin{align} Let \;\;cos^{-1}\left(-\frac{1}{2}\right)=y. \;\;Then,\;\; cos y = -\frac{1}{2} = -cos\left(\frac{\pi}{3}\right)= cos\left(\pi - \frac{\pi}{3}\right) = cos\left(\frac{2\pi}{3}\right)\end{align}
\begin{align} \therefore cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}\end{align}
\begin{align} Let \;\; sin^{-1}\left(-\frac{1}{2}\right)=z. \;\;Then,\;\; sin z = -\frac{1}{2} = -sin\left(\frac{\pi}{6}\right)= sin\left(-\frac{\pi}{6}\right)\end{align}
\begin{align} \therefore sin^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}\end{align}
\begin{align} \therefore tan^{-1} (1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)\end{align}
\begin{align} =\frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}\end{align}
\begin{align} =\frac{3\pi + 8\pi -2\pi}{12}=\frac{9\pi}{12}=\frac{3\pi}{4}\end{align}
Q12 Find the principal value of \begin{align} cos^{-1}\left(\frac{1}{2}\right) + 2sin^{-1}\left(\frac{1}{2}\right)\end{align} Ans: \begin{align} Let \;\;cos^{-1}\left(\frac{1}{2}\right) =x. \;\;Then,\;\; cos x = \frac{1}{2} = cos\left(\frac{\pi}{3}\right).\end{align}
\begin{align} \therefore cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}\end{align}
\begin{align} Let \;\; sin^{-1}\left(\frac{1}{2}\right)=y. \;\;Then,\;\; sin y = \frac{1}{2} = sin\left(\frac{\pi}{6}\right).\end{align}
\begin{align} \therefore sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}\end{align}
\begin{align} \therefore cos^{-1}\left(\frac{1}{2}\right) + 2sin^{-1}\left(\frac{1}{2}\right)\end{align}
\begin{align} =\frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}\end{align}
Q13 Find the value of if \begin{align} sin^{-1} x= y,\end{align}
then
\begin{align} (A) 0 ≤ y ≤ x \;\;\;\;\; (B) -\frac{\pi}{2} ≤ y ≤ \frac{\pi}{2} \end{align}
\begin{align} (C)\; 0 < y < \pi \;\;\;\;\; (D) -\frac{\pi}{2} < y < \frac{\pi}{2} \end{align}Ans: It is given that sin−1 x = y.
We know that the range of the principal value branch of sin−1 is
\begin{align} \left[-\frac{\pi}{2} ,\frac{\pi}{2}\right] \end{align}
Therefore,
\begin{align} (B) -\frac{\pi}{2} ≤ y ≤ \frac{\pi}{2} \end{align}
Q14 Find the value of if \begin{align} tan^{-1}\sqrt3 - sec^{-1}(-2)\end{align}
is equal to
\begin{align} (A) \pi \;\;(B) -\frac{\pi}{3}\;\; (C) \frac{\pi}{3} \;\;(D) \frac{2\pi}{3}\end{align}Ans: \begin{align} Let \;\; tan^{-1}(\sqrt 3)=x. \;\;Then\;\; tan x = \sqrt 3 = tan\left(\frac{\pi}{3}\right).\end{align}We know that the range of the principal value branch of tan−1 is\begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right)\end{align}\begin{align} \therefore tan^{-1}\sqrt3=\frac{\pi}{3}\end{align}\begin{align} Let \;\; sec^{-1}\left(-2\right)=y \;\;Then\;\; sec y = -2 = -sec\left(\frac{\pi}{3}\right) = sec\left(\pi - \frac{\pi}{3}\right) = sec\left(\frac{2\pi}{3}\right)\end{align}We know that the range of the principal value branch of sec−1 is\begin{align} \left[0,\pi\right] - \left(\frac{\pi}{2}\right)\end{align}\begin{align} \therefore sec^{-1}({-2})=\frac{2\pi}{3}\end{align}Hence, \begin{align} tan^{-1}\sqrt3 - sec^{-1}(-2)\end{align}\begin{align} =\frac{\pi}{3} - \frac{2\pi}{3}=-\frac{\pi}{3}\end{align}