Inverse Trigonometric Functions Question Answers: NCERT Class 12 Mathematics

Welcome to the Chapter 2 - Inverse Trigonometric Functions, Class 12 Mathematics - NCERT Solutions page. Here, we provide detailed question answers for Chapter 2 - Inverse Trigonometric Functions.The page is designed to help students gain a thorough understanding of the concepts related to natural resources, their classification, and sustainable development.

Our solutions explain each answer in a simple and comprehensive way, making it easier for students to grasp key topics Positive and negative angles, radians and degrees, trigonometric identities, domain and range, sum and difference identities, multiple and submultiple angles, graphs of trigonometric functions, identities related to sin, cos, and tan. and excel in their exams. By going through these Inverse Trigonometric Functions question answers, you can strengthen your foundation and improve your performance in Class 12 Mathematics. Whether you're revising or preparing for tests, this chapter-wise guide will serve as an invaluable resource.

In the previous chapter, types of functions are mentioned. If the function is not one-one, onto or both, then its inverse does not exist. This is the primary condition for inverse which must be fulfilled. Knowledge of the domain of range which we acquired earlier would help us in this chapter for graphing of inverse trigonometric functions. Trigonometric functions which are not one-one, onto or both will not be discussed. It has wide applications in engineering and other science related branches. This chapter consists of range, domain and principle value branches, graphs, elementary properties.

Download PDF - Chapter 2 Inverse Trigonometric Functions - Class 12 Mathematics

Download PDF - NCERT Examplar Solutions - Chapter 2 Inverse Trigonometric Functions - Class 12 Mathematics

Exercise 1

  • Q1 Find the principal value of \begin{align} sin^{-1}\left(-\frac{1}{2}\right)\end{align}
    Ans:

    \begin{align} sin^{-1}\left(-\frac{1}{2}\right)=y \;\;Then\;\; sin y = -\frac{1}{2} = -sin\left(\frac{\pi}{6}\right)= sin\left(-\frac{\pi}{6}\right)\end{align} 

    We know that the range of the principal value branch of sin−1 is

    \begin{align} \left[-\frac{\pi}{2},\frac{\pi}{2}\right] and \;\;sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}\end{align} 

    Therefore, the principal value of

    \begin{align} sin^{-1}\left(-\frac{1}{2}\right) is -\frac{\pi}{6}\end{align} 


    Q2 Find the principal value of \begin{align} cos^{-1}\left(\frac{\sqrt3}{2}\right)\end{align}
    Ans:

    \begin{align} Let\;\; cos^{-1}\left(\frac{\sqrt3}{2}\right)=y, \;\;Then,\;\; cos y = \frac{\sqrt3}{2} = cos\left(\frac{\pi}{6}\right)\end{align} 

    We know that the range of the principal value branch of cos−1 is

     \begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{\pi}{6}\right) = \frac{\sqrt3}{2}\end{align} 

    Therefore, the principal value of

     \begin{align} cos^{-1}\left(\frac{\sqrt3}{2}\right) is \frac{\pi}{6}\end{align} 


    Q3 Find the principal value of \begin{align} cosec^{-1}\left({2}\right)\end{align}
    Ans:

    \begin{align} Let \;\; cosec^{-1}\left({2}\right)=y \;\;Then\;\; cosec y = 2 = cosec\left(\frac{\pi}{6}\right)\end{align} 

    We know that the range of the principal value branch of cosec−1 is
    \begin{align} \left[-\frac{\pi}{2},\frac{\pi}{2}\right] - \left(0 \right). \end{align}
    Therefore, the principal value of
    \begin{align} \frac{\pi}{6}\end{align}
     
     
     

    Q4 Find the principal value of \begin{align} tan^{-1}\left(-\sqrt3\right)\end{align}
    Ans:

    \begin{align} Let \;\; tan^{-1}\left(-\sqrt3\right)=y \;\;Then\;\; tan y = -\sqrt3 = -tan\left(\frac{\pi}{3}\right)= tan\left(-\frac{\pi}{3}\right)\end{align}

    We know that the range of the principal value branch of tan−1 is 

    \begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right) and \;\;tan\left(-\frac{\pi}{3}\right) = -\sqrt3\end{align}

     
    Therefore, the principal value of
     
    \begin{align} tan^{-1}\left(-\sqrt 3\right) is -\frac{\pi}{3}\end{align}

    Q5 Find the principal value of \begin{align} cos^{-1}\left(-\frac{1}{2}\right)\end{align}
    Ans:

    \begin{align} Let\;\; cos^{-1}\left(-\frac{1}{2}\right)=y, \;\;Then,\;\; cos y = -\frac{1}{2} = - cos\left(\frac{\pi}{3}\right)=cos\left(\pi - \frac{\pi}{3}\right) = cos\left(\frac{2\pi}{3}\right)\end{align}

    We know that the range of the principal value branch of cos−1 is 

     \begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}\end{align}

    Therefore, the principal value of

     \begin{align} cos^{-1}\left(-\frac{1}{2}\right) is \frac{2\pi}{3}\end{align} 


    Q6 Find the principal value of \begin{align} tan^{-1}\left(-1\right)\end{align}
    Ans:

    \begin{align} Let \;\; tan^{-1}\left(-1\right)=y. \;\;Then,\;\; tan y = -1 = -tan\left(\frac{\pi}{4}\right)= tan\left(-\frac{\pi}{4}\right)\end{align}

    We know that the range of the principal value branch of tan−1 is 

    \begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right) and \;\;tan\left(-\frac{\pi}{4}\right) = - 1\end{align}

    Therefore, the principal value of

    \begin{align} tan^{-1}\left(- 1\right) is -\frac{\pi}{4}\end{align}

     


    Q7 Find the principal value of \begin{align} sec^{-1}\left(\frac{2}{\sqrt3}\right)\end{align}
    Ans:

    \begin{align} Let \;\; sec^{-1}\left(\frac{2}{\sqrt3}\right)=y \;\;Then\;\; sec y = \frac{2}{\sqrt3} = sec\left(\frac{\pi}{6}\right)\end{align}

    We know that the range of the principal value branch of sec−1 is 

     \begin{align} \left[0,\pi\right] - \left(\frac{\pi}{2}\right) and \;\;sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt3}\end{align}

    Therefore, the principal value of

     \begin{align} sec^{-1}\left(\frac{2}{\sqrt3}\right) is \frac{\pi}{6}\end{align}

     


    Q8 Find the principal value of \begin{align} cot^{-1}\left(\sqrt3\right)\end{align}
    Ans:

    \begin{align} Let \;\; cot^{-1}\left(\sqrt3\right)=y. \;\;Then,\;\; cot y = \sqrt3 = cot\left(\frac{\pi}{6}\right).\end{align}

    We know that the range of the principal value branch of cot−1 is 

    \begin{align} \left(0, \pi\right) and \;\;cot\left(\frac{\pi}{6}\right) = \sqrt3.\end{align}

     
    Therefore, the principal value of
    \begin{align} cot^{-1}\left(\sqrt 3\right) is \frac{\pi}{6}\end{align}

    Q9 Find the principal value of \begin{align} cos^{-1}\left(-\frac{1}{\sqrt2}\right)\end{align}
    Ans:

    \begin{align} Let\;\; cos^{-1}\left(-\frac{1}{\sqrt2}\right)=y, \;\;Then,\;\; cos y = -\frac{1}{\sqrt2} = - cos\left(\frac{\pi}{4}\right)=cos\left(\pi - \frac{\pi}{4}\right) = cos\left(\frac{3\pi}{4}\right)\end{align}

    We know that the range of the principal value branch of cos−1 is 

     \begin{align} \left[0,\pi\right] and \;\;cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt2}\end{align}

    Therefore, the principal value of

     \begin{align} cos^{-1}\left(-\frac{1}{\sqrt2}\right) is \frac{3\pi}{4}\end{align} 


    Q10 Find the principal value of \begin{align} cosec^{-1}\left({-\sqrt2}\right)\end{align}
    Ans:

    \begin{align} Let \;\; cosec^{-1}\left({-\sqrt2}\right)=y \;\;Then\;\; cosec y = -{\sqrt2} =- cosec\left(\frac{\pi}{4}\right) = cosec\left(-\frac{\pi}{4}\right)\end{align} 

    We know that the range of the principal value branch of cosec−1 is

    \begin{align} \left[-\frac{\pi}{2},\frac{\pi}{2}\right] - \left(0 \right) and \;\;cosec\left(-\frac{\pi}{4}\right) = -\sqrt2.\end{align}

    Therefore, the principal value of 

    \begin{align} cosec^{-1}\left(-\sqrt2\right) is -\frac{\pi}{4}\end{align}


    Q11 Find the principal value of \begin{align} tan^{-1} (1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)\end{align}
    Ans:

    \begin{align} Let \;\; tan^{-1}(1)=x. \;\;Then\;\; tan x = 1 = tan\left(\frac{\pi}{4}\right).\end{align}

     \begin{align}  \therefore tan^{-1}(1)=tan\left(\frac{\pi}{4}\right)\end{align}

    \begin{align} Let \;\;cos^{-1}\left(-\frac{1}{2}\right)=y. \;\;Then,\;\; cos y = -\frac{1}{2} = -cos\left(\frac{\pi}{3}\right)= cos\left(\pi - \frac{\pi}{3}\right) = cos\left(\frac{2\pi}{3}\right)\end{align}

     \begin{align}  \therefore cos^{-1}\left(-\frac{1}{2}\right)  = \frac{2\pi}{3}\end{align}

    \begin{align} Let \;\; sin^{-1}\left(-\frac{1}{2}\right)=z. \;\;Then,\;\; sin z = -\frac{1}{2} = -sin\left(\frac{\pi}{6}\right)= sin\left(-\frac{\pi}{6}\right)\end{align}

     \begin{align}  \therefore sin^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}\end{align}

     \begin{align}  \therefore tan^{-1} (1) + cos^{-1}\left(-\frac{1}{2}\right) + sin^{-1}\left(-\frac{1}{2}\right)\end{align}

    \begin{align} =\frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}\end{align}

    \begin{align} =\frac{3\pi + 8\pi -2\pi}{12}=\frac{9\pi}{12}=\frac{3\pi}{4}\end{align}


    Q12 Find the principal value of \begin{align} cos^{-1}\left(\frac{1}{2}\right) + 2sin^{-1}\left(\frac{1}{2}\right)\end{align}
    Ans:

    \begin{align} Let \;\;cos^{-1}\left(\frac{1}{2}\right) =x. \;\;Then,\;\; cos x = \frac{1}{2} = cos\left(\frac{\pi}{3}\right).\end{align}

    \begin{align}  \therefore cos^{-1}\left(\frac{1}{2}\right)  = \frac{\pi}{3}\end{align}

    \begin{align} Let \;\; sin^{-1}\left(\frac{1}{2}\right)=y. \;\;Then,\;\; sin y = \frac{1}{2} = sin\left(\frac{\pi}{6}\right).\end{align}

    \begin{align}  \therefore sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}\end{align}

    \begin{align} \therefore cos^{-1}\left(\frac{1}{2}\right) + 2sin^{-1}\left(\frac{1}{2}\right)\end{align}

    \begin{align} =\frac{\pi}{3} + \frac{2\pi}{6} = \frac{\pi}{3} + \frac{\pi}{3} = \frac{2\pi}{3}\end{align}


    Q13 Find the value of if \begin{align} sin^{-1} x= y,\end{align}
    then
    \begin{align} (A) 0 ≤ y ≤ x \;\;\;\;\; (B) -\frac{\pi}{2} ≤ y ≤ \frac{\pi}{2} \end{align}
    \begin{align} (C)\; 0 < y < \pi \;\;\;\;\; (D) -\frac{\pi}{2} < y < \frac{\pi}{2} \end{align}
    Ans:

    It is given that sin−1 x = y.

    We know that the range of the principal value branch of sin−1 is 

    \begin{align}  \left[-\frac{\pi}{2} ,\frac{\pi}{2}\right] \end{align} 

    Therefore,

     \begin{align}  (B) -\frac{\pi}{2} ≤ y ≤ \frac{\pi}{2} \end{align}


    Q14 Find the value of if \begin{align} tan^{-1}\sqrt3 - sec^{-1}(-2)\end{align}
    is equal to
    \begin{align} (A) \pi \;\;(B) -\frac{\pi}{3}\;\; (C) \frac{\pi}{3} \;\;(D) \frac{2\pi}{3}\end{align}
    Ans:
    \begin{align} Let \;\; tan^{-1}(\sqrt 3)=x. \;\;Then\;\; tan x = \sqrt 3 = tan\left(\frac{\pi}{3}\right).\end{align}
    We know that the range of the principal value branch of tan−1 is
      \begin{align} \left(-\frac{\pi}{2},\frac{\pi}{2}\right)\end{align}
      \begin{align}  \therefore tan^{-1}\sqrt3=\frac{\pi}{3}\end{align}
    \begin{align} Let \;\; sec^{-1}\left(-2\right)=y \;\;Then\;\; sec y = -2 = -sec\left(\frac{\pi}{3}\right) = sec\left(\pi - \frac{\pi}{3}\right) = sec\left(\frac{2\pi}{3}\right)\end{align}
    We know that the range of the principal value branch of sec−1 is 
      \begin{align} \left[0,\pi\right] - \left(\frac{\pi}{2}\right)\end{align}
      \begin{align}  \therefore sec^{-1}({-2})=\frac{2\pi}{3}\end{align}
    Hence, \begin{align} tan^{-1}\sqrt3 - sec^{-1}(-2)\end{align} 
    \begin{align} =\frac{\pi}{3} - \frac{2\pi}{3}=-\frac{\pi}{3}\end{align} 
     

Key Features of NCERT Class 12 Mathematics Chapter 'Inverse Trigonometric Functions' question answers :

  • All chapter question answers with detailed explanations.
  • Simple language for easy comprehension.
  • Aligned with the latest NCERT guidelines.
  • Perfect for exam preparation and revision.

Popular Questions of Class 12 Mathematics

Recently Viewed Questions of Class 12 Mathematics