Integrals Question Answers: NCERT Class 12 Mathematics

Welcome to the Chapter 7 - Integrals, Class 12 Mathematics - NCERT Solutions page. Here, we provide detailed question answers for Chapter 7 - Integrals.The page is designed to help students gain a thorough understanding of the concepts related to natural resources, their classification, and sustainable development.

Our solutions explain each answer in a simple and comprehensive way, making it easier for students to grasp key topics and excel in their exams. By going through these Integrals question answers, you can strengthen your foundation and improve your performance in Class 12 Mathematics. Whether you're revising or preparing for tests, this chapter-wise guide will serve as an invaluable resource.

Integration is an inverse process of differentiation. In this chapter, we will learn how to find the integral of a function. Its knowledge in calculus is very much needed for finding the areas under curves, etc. This chapter consists of integration of a variety of functions by substitutions, by parts and by partial fractions. Definite integrals as a limit of a sum , fundamental theorem of calculus, properties of definite integrals.

Download PDF - Chapter 7 Integrals - Class 12 Mathematics

Download PDF - NCERT Examplar Solutions - Chapter 7 Integrals - Class 12 Mathematics

Exercise 1

  • Q1 Integrals sin 2x
    Ans:

    The anti derivative of sin 2x is a function of x whose derivative is sin 2x.

    It is known that,

    \begin{align} \frac {d}{dx} (cos 2x) = 2 sin2x \end{align}

    ⇒ \begin{align} sin 2x =-\frac {1}{2} \frac {d}{dx}(cos 2x) \end{align} 

    ∴  \begin{align} sin 2x = \frac {d}{dx}\left(-\frac {1}{2}cos 2x\right) \end{align} 

    Therefore, the anti derivative of sin2x is 

    \begin{align} sin 2x \;is -\frac {1}{2}cos 2x \end{align} 


    Q2 Integrals cos3x
    Ans:

    The anti derivative of cos 3x is a function of x whose derivative is cos 3x.

    It is known that,

    \begin{align} \frac {d}{dx} (sin 3x) = 3 cos3x \end{align}

    ⇒ \begin{align} cos 3x =\frac {1}{3} \frac {d}{dx}(sin 3x) \end{align} 

    ∴  \begin{align} cos 3x = \frac {d}{dx}\left(\frac {1}{3}sin 3x\right) \end{align} 

    Therefore, the anti derivative of cos3x is 

    \begin{align} sin 2x \;is \frac {1}{3}sin 3x \end{align} 


    Q3 Integrals e2x
    Ans:

    The anti derivative of e2x is a function of x whose derivative is e2x.

    It is known that,

    \begin{align} \frac {d}{dx} (e^{2x}) = 2e^{2x} \end{align}

    ⇒ \begin{align} e^{2x} =\frac {1}{2} \frac {d}{dx}(e^{2x}) \end{align} 

    ∴  \begin{align} e^{2x} = \frac {d}{dx}\left(\frac {1}{2}e^{2x}\right) \end{align} 

    Therefore, the anti derivative of e2x

    \begin{align} e^{2x} \;is \frac {1}{2}e^{2x} \end{align} 

     


    Q4 Integrals (ax + b)2
    Ans:

    The anti derivative of (ax + b)2 is a function of x whose derivative is (ax + b)2.

    It is known that,

    \begin{align} \frac {d}{dx} ((ax+b)^3) = 3a(ax+b)^2 \end{align}

    ⇒ \begin{align} (ax + b)^2 =\frac {1}{3a} \frac {d}{dx}(ax+b)^3 \end{align} 

    ∴  \begin{align} (ax + b)^2 = \frac {d}{dx}\left(\frac {1}{3a}(ax + b)^3\right) \end{align} 

    Therefore, the anti derivative of (ax +b)2

    \begin{align} (ax + B)^2 \;is \frac {1}{3a}(ax +b)^3 \end{align}


    Q5 sin 2x – 4e3x
    Ans:

    The anti derivative of sin 2x – 4e3x is the function of x whose derivative is sin 2x – 4e3x.

    It is known that,

    \begin{align} \frac {d}{dx} \left(-\frac{1}{2}cos 2x  –  \frac {4}{3} e^{3x}\right) = sin2x  –  4e^{3x} \end{align} 

    Therefore, the anti derivative of (sin 2x – 4e3x) is \begin{align}  \left(-\frac{1}{2}cos 2x  –  \frac {4}{3} e^{3x}\right) \end{align} 

     

     


    Q6 \begin{align} \int \left(4e^{3x} + 1\right).dx \end{align}
    Ans:

    \begin{align} \int \left(4e^{3x} + 1\right).dx \end{align}

    \begin{align} =4\int e^{3x}.dx + \int 1.dx \end{align}

    \begin{align} =4\left(\frac {e^{3x}}{3}\right) + x + C \end{align}

    \begin{align} =\frac {4}{3} e^{3x} + x + C \end{align}


    Q7 \begin{align} \int x^2\left(1 - \frac{1}{x^2}\right).dx \end{align}
    Ans:

    \begin{align} \int x^2\left(1 - \frac{1}{x^2}\right).dx \end{align}

     \begin{align} =\int \left(x^2 - 1\right).dx \end{align}

     \begin{align} =\int x^2.dx - \int1.dx \end{align}

     \begin{align} =\frac{x^3}{3} - x + C \end{align}


    Q8 \begin{align} \int \left({a}{x^2} + bx + c\right) .dx\end{align}
    Ans:

    \begin{align} \int \left({a}{x^2} + bx + c\right) .dx\end{align}

    \begin{align} =a\int {x^2}.dx + b\int x.dx + c\int 1.dx \end{align}

    \begin{align} =a\left(\frac {x^3}{3}\right) + b\left(\frac {x^2}{2}\right) + cx + C\end{align}

     


    Q9 \begin{align} \int \left({2}{x^2} + e^x\right) .dx\end{align}
    Ans:

    \begin{align} \int \left({2}{x^2} + e^x\right) .dx\end{align}

    \begin{align} =2\int {x^2}.dx + \int e^x.dx \end{align}

    \begin{align} =2\left(\frac {x^3}{3}\right) +e^x + C\end{align}

    \begin{align} =\frac {2}{3}.x^3 +e^x + C\end{align}


    Q10 \begin{align} \int \left(\sqrt{x} - \frac {1}{\sqrt{x}}\right)^2 .dx\end{align}
    Ans:

    \begin{align} \int \left(\sqrt{x} - \frac {1}{\sqrt{x}}\right)^2 .dx\end{align}

    \begin{align} =\int \left(x + \frac {1}{x} - 2\right) .dx\end{align}

    \begin{align} =\int x .dx + \int \frac {1}{x} . dx - 2\int 1. dx\end{align}

    \begin{align} =\frac{x^2}{2} + \log\left(\left|x\right|\right) - 2x + C\end{align}

     


    Q11 \begin{align} \int \frac{x^3 + 5x^2 - 4}{x^2} . dx\end{align}
    Ans:

    \begin{align} \int \frac{x^3 + 5x^2 - 4}{x^2} . dx\end{align}

    \begin{align} =\int \left(x + 5 - 4x^{-2}\right) . dx\end{align}

    \begin{align} =\int x .dx + 5 \int 1.dx- 4 \int x^{-2} .dx\end{align}

    \begin{align} =\frac {x^2}{2} + 5x + 4 \left(\frac{x^{-1}}{-1}\right) + C\end{align}

    \begin{align} =\frac {x^2}{2} + 5x + \frac{4}{x} + C\end{align}


    Q12 \begin{align} \int \frac{x^3 + 3x + 4}{\sqrt{x}} . dx\end{align}
    Ans:

    \begin{align} \int \frac{x^3 + 3x + 4}{\sqrt{x}} . dx\end{align}

    \begin{align} =\int \left(x^\frac{5}{2} + 3x^\frac{1}{2} + 4x^\frac{1}{2}\right) . dx\end{align}

    \begin{align} =\frac{\left(x^{\displaystyle\frac72}\right)}{\displaystyle\frac72}+ \frac{3\left(x^{\displaystyle\frac32}\right)}{\displaystyle\frac32} + \frac{4\left(x^{\displaystyle\frac12}\right)}{\displaystyle\frac12} + C\end{align}

    \begin{align} =\frac27\left(x^\frac72\right)+ 2\left(x^\frac32\right) + 8\left(x^\frac12\right) + C\end{align}

    \begin{align} =\frac27\left(x^\frac72\right)+ 2\left(x^\frac32\right) + 8\left(\sqrt x\right) + C\end{align}

     


    Q13 \begin{align} \int \frac{x^3 - x^2 + x - 1}{x-1} . dx\end{align}
    Ans:

    \begin{align} \int \frac{x^3 - x^2 + x - 1}{x-1} . dx\end{align}

    On dividing, we obtain

    \begin{align} =\int \left({x^2 + 1}\right) . dx \end{align}

    \begin{align} =\int {x^2} . dx + \int 1 .dx \end{align}

    \begin{align} =\frac {x^3}{3}  + x + C \end{align}


    Q14 \begin{align} \int\left(1-x\right).\sqrt {x}.dx\end{align}
    Ans:

    \begin{align} \int\left(1-x\right).\sqrt {x}.dx\end{align}

    \begin{align} =\int \left(\sqrt {x} - x^\frac32\right).dx\end{align}

    \begin{align} =\frac{x^{\displaystyle\frac32}}{\displaystyle\frac32} - \frac{x^{\displaystyle\frac52}}{\displaystyle\frac52}+C \end{align}

    \begin{align} =\frac23\;x^\frac32\; - \frac25\;x^\frac52\;+C \end{align}

     

     


    Q15 \begin{align} \int\sqrt {x}.\left(3x^2+2x + 3\right).dx\end{align}
    Ans:
    \begin{align} \int\sqrt {x}.\left(3x^2+2x + 3\right).dx\end{align}
     
    \begin{align} =\int\left(3x^\frac52+2x^\frac32 + 3x^\frac12\right).dx\end{align}
     
    \begin{align} =3\int x^\frac52 .dx+2 \int x^\frac32 .dx + 3\int x^\frac12.dx\end{align}
     
    \begin{align} =3\left(\frac{x^{\displaystyle\frac72}}{\displaystyle\frac72}\right) + 2\left(\frac{x^{\displaystyle\frac52}}{\displaystyle\frac52}\right)+3\left(\frac{x^{\displaystyle\frac32}}{\displaystyle\frac32}\right)+C \end{align}
     
     \begin{align} =\frac67\;x^\frac72\; + \frac45\;x^\frac52\;+ 2x^\frac32\; +C \end{align}
     

    Q16 \begin{align} \int\left(2x - 3Cosx + e^x\right).dx\end{align}
    Ans:

    \begin{align} \int\left(2x - 3Cosx + e^x\right).dx\end{align}

    \begin{align} =2\int x .dx - 3\int Cosx .dx + \int e^x.dx\end{align}

    \begin{align} =\frac{2x^2}{2} - 3(Sinx) +  e^x + C\end{align}

    \begin{align} =x^2 - 3Sinx +  e^x + C\end{align}

     


    Q17 \begin{align} \int\left(2x^2-3Sinx +5\sqrt {x}\right).dx\end{align}
    Ans:

    \begin{align} \int\left(2x^2-3Sinx +5\sqrt {x}\right).dx\end{align}

    \begin{align} =2\int x^2.dx-3\int Sinx.dx +5\int x^\frac12.dx \end{align}

    \begin{align} =\frac{2x^3}{3} - 3(- Cos x) +5\left(\frac{x^{\displaystyle\frac32}}{\displaystyle\frac32}\right) + C \end{align}

    \begin{align} =\frac{2}{3}.x^3 + 3Cos x + \frac{10}{3}.x^\frac{3}{2} + C\end{align}

     


    Q18 \begin{align} \int sec x . \left(sec x + tan x\right) .dx \end{align}
    Ans:

    \begin{align} \int sec x . \left(sec x + tan x\right) .dx \end{align}

    \begin{align} =\int \left(sec^2 x  + sec x . tan x\right) .dx \end{align}

    \begin{align} =\int sec^2 x . dx + \int sec x . tan x .dx \end{align}

    \begin{align} = tan x  + sec x + C \end{align}


    Q19 \begin{align} \int \frac {sec^2 x}{Coses^2 x} . dx\end{align}
    Ans:

    \begin{align} \int \frac {sec^2 x}{Coses^2 x} . dx\end{align}

    \begin{align} =\int \left(\frac{\frac {1}{Cos^2 x}}{\frac{1}{sin^2 x}}\right) . dx\end{align}

    \begin{align} =\int \left(\frac{Sin^2x}{Cos^2x}\right) . dx\end{align}

    \begin{align} =\int tan^2 x . dx\end{align}

    \begin{align} =\int \left(sec^2x - 1\right) . dx\end{align}

    \begin{align} =\int sec^2x . dx - \int 1. dx\end{align}

    \begin{align} = tanx - x + C\end{align}


    Q20 \begin{align} \int \left(\frac {2-3sin x}{cos^2 x}\right) . dx\end{align}
    Ans:

    \begin{align} \int \left(\frac {2-3sin x}{cos^2 x}\right) . dx\end{align}

    \begin{align} =\int \left(\frac {2}{cos^2 x} - \frac{3sinx}{cos^2x}\right) . dx\end{align}

    \begin{align} =2\int sec^2 x .dx   - 3 \int tan x . sec x. dx\end{align}

    \begin{align} =2 tan x - 3 sec x + C\end{align} 


    Q21 The anti derivative of \begin{align} \left(\sqrt x + \frac {1}{\sqrt x}\right)\end{align} equals to \begin{align} (A) \frac{1}{3}.x^\frac{1}{3} + 2.x^\frac{1}{2} +C \;\;\;\; (B) \frac{2}{3}.x^\frac{2}{3} + \frac{1}{2}.x^2 +C \end{align}
    \begin{align} (C) \frac{2}{3}.x^\frac{3}{2} +2 x^\frac{1}{2} +C \;\;\;\;(D) \frac{3}{2}.x^\frac{3}{2} +\frac{1}{2}. x^\frac{1}{2} +C \end{align}
    Ans:

    \begin{align} \int\left(\sqrt x + \frac {1}{\sqrt x}\right).dx \end{align}

    \begin{align}= \int  x^\frac{1}{2}.dx + \int x^\frac{-1}{2}.dx \end{align}

    \begin{align}= \left(\frac {x^\frac{3}{2}}{\frac{3}{2}}\right) + \left(\frac {x^\frac{1}{2}}{\frac{1}{2}}\right) + C\end{align}

    \begin{align}= \frac {2}{3} . x^{\frac{3}{2}}+ 2x^\frac{1}{2} + C\end{align}

    Hence, the Correct Answer is C.


    Q22 If \begin{align} \frac{d}{dx} f(x) = 4x^3 - \frac{3}{x^4}\end{align} such that f(2) = 0 , then f(x) is
    \begin{align} (A) x^4 + \frac {1}{x^3} - \frac{129}{8} \;\;\;\;(B) x^3 + \frac{1}{x^4} + \frac{129}{8}\end{align}
    \begin{align} (c) x^3 + \frac {1}{x^4} + \frac{129}{8} \;\;\;\;(D) x^3 + \frac{1}{x^4} - \frac{129}{8}\end{align}
    Ans:

    It is given that,

    \begin{align} \frac{d}{dx} f(x) = 4x^3 - \frac{3}{x^4}\end{align}  

    ∴ Anti derivative of 

    \begin{align} 4x^3 - \frac{3}{x^4} = f(x)\end{align}  

    ∴ \begin{align} f(x)= \int \left(4x^3 - \frac{3}{x^4}\right).dx\end{align}  

    \begin{align} f(x)=  4\int x^3.dx - 3\int {x^{-4}}.dx\end{align}  

    \begin{align} f(x)= 4\left(\frac {x^4}{4}\right) - 3\left(\frac {x^{-3}}{-3}\right) + C\end{align}  

    ∴ \begin{align} f(x)=   x^4 + \frac{1}{x^3} + C\end{align}  

    Also, f(2) = 0

    ∴ \begin{align} f(2) =\left(2\right)^4 + \frac{1}{\left(2\right)^3} + C = 0 \end{align}

    => \begin{align} 16 + \frac{1}{8} + C = 0 \end{align}

    => \begin{align} C = -\left(16 + \frac{1}{8}\right) \end{align}

    => \begin{align} C = \frac{-129}{8} \end{align}

    ∴  \begin{align} f(x)= x^4 + \frac{1}{x^3} -\frac{129}{8}  \end{align}

    Hence, the correct answer is A.

     

Key Features of NCERT Class 12 Mathematics Chapter 'Integrals' question answers :

  • All chapter question answers with detailed explanations.
  • Simple language for easy comprehension.
  • Aligned with the latest NCERT guidelines.
  • Perfect for exam preparation and revision.

Popular Questions of Class 12 Mathematics

Recently Viewed Questions of Class 12 Mathematics