-
Q1 Evaluate the determinants
\begin{vmatrix} \mathbf{2} & \mathbf{4} \\ \mathbf{-5} & \mathbf{-1} \end{vmatrix}Ans: \[ \begin{vmatrix} \mathbf{2} & \mathbf{4} \\ \mathbf{-5} & \mathbf{-1} \end{vmatrix} \]
= 2(−1) − 4(−5)
= − 2 + 20
= 18
Q2 Evaluate the determinants
(i) \begin{vmatrix} \mathbf{Cosθ} & \mathbf{−sin θ} \\ \mathbf{sin θ} & \mathbf{cos θ} \end{vmatrix}
(ii) \begin{vmatrix} \mathbf{x^2 − x + 1} & \mathbf{x − 1} \\ \mathbf{x + 1} & \mathbf{x + 1} \end{vmatrix}Ans: (i) \begin{vmatrix} \mathbf{Cosθ} & \mathbf{−sin θ} \\ \mathbf{sin θ} & \mathbf{cos θ} \end{vmatrix}
= (cos θ)(cos θ) − (−sin θ)(sin θ)
= cos2 θ+ sin2 θ
= 1
(ii) \begin{vmatrix} \mathbf{x^2 − x + 1} & \mathbf{x − 1} \\ \mathbf{x + 1} & \mathbf{x + 1} \end{vmatrix}
= (x2 − x + 1)(x + 1) − (x − 1)(x + 1)
= x3 − x2 + x + x2 − x + 1 − (x2 − 1)
= x3 + 1 − x2 + 1
= x3 − x2 + 2
Q3 If A=\(\begin{bmatrix}1 & 2\\4 & 2\end{bmatrix}\), then show that |2A| = 4|A| Ans: The given matrix is
\(u=\begin{bmatrix}1 & 2\\4 & 2\end{bmatrix}\)
So 2A = 2\(\begin{bmatrix}1 & 2\\4 & 2\end{bmatrix}\)
\(= \begin{bmatrix}2 & 4\\8 & 4\end{bmatrix}\)
so L.H.S. = |2A| \(= \begin{bmatrix}2 & 4\\8 & 4\end{bmatrix}\)
= 2 x 4 - 4 x 8
= 8 - 32
= -24
Now, |A| \(= \begin{bmatrix}1 & 2\\4 & 2\end{bmatrix}\)= 1 x 2 - 2 x 4= 2 - 8= -6So R.H.S. = 4 |A| = 4 x (-6) = -24So L.H.S. = R.H.S.Q4 If A=\(\begin{bmatrix}1 & 0 & 1\\0 & 1 & 2\\0 & 0 & 4\end{bmatrix}\), then show that |3A| = 27|A|. Ans: The given matrix is
A=\(\begin{bmatrix}1 & 0 & 1\\0 & 1 & 2\\0 & 0 & 4\end{bmatrix}\)
It can be observed that in the first column, two entries are zero. Thus, we expand along the first column (C1) for easier calculation.
| A| = 1\(\begin{vmatrix}1 & 2\\0 & 4\end{vmatrix}\) - 0\(\begin{vmatrix}0 & 1\\0 & 4\end{vmatrix}\) + 0\(\begin{vmatrix}0 &1\\1 & 2\end{vmatrix}\) = 1(4 – 0) – 0 + 0 = 4
So 27 |A| = 27 (4) = 108 ……. (i)
Now 3A = 3\(\begin{bmatrix}1 & 0 & 1\\0 & 1 & 2\\0 & 0 & 4\end{bmatrix}\)=\(\begin{bmatrix}3 & 0 & 3\\0 & 3 & 6\\0 & 0 & 12\end{bmatrix}\)
So |3A| = 3\(\begin{vmatrix}3 & 6\\0 & 12\end{vmatrix}\) - 0\(\begin{vmatrix}0 & 3\\0 & 12\end{vmatrix}\) + 0\(\begin{vmatrix}0 &3\\0 & 6\end{vmatrix}\)
= 3 (36 – 0) = 3(36) 108 ……….. (ii)
From equations (i) and (ii), we have:
|3A| = 27|A|
Q5 Evaluate the determinants
(i) \(\begin{vmatrix}3 & -1 & -2\\0 & 1 & 2\\0 & 0 & 4\end{vmatrix}\) (iii) \(\begin{vmatrix}3 & -4 & 5\\1 & 1 & -2\\2 & 3 & 1\end{vmatrix}\)
(ii) \(\begin{vmatrix}0 & 1 & 2\\-1 & 0 & -3\\-2 & 3 & 0\end{vmatrix}\)(iv) \(\begin{vmatrix}2 & -1 & -2\\0 & 2 & -1\\3 & -5 & 0\end{vmatrix}\)Ans: (i) Let A = \(\begin{vmatrix}3 & -1 & -2\\0 & 1 & 2\\0 & 0 & 4\end{vmatrix}\)
It can be observed that in the second row, two entries are zero. Thus, we expand along the second row for easier calculation.
|A| = -0\(\begin{vmatrix}-1 & -2\\-5 & 0\end{vmatrix}\) + 0\(\begin{vmatrix}3 & -2\\3 & 0\end{vmatrix}\) – (-1)\(\begin{vmatrix}3 &-1\\3 &-5\end{vmatrix}\) = (-15 + 3) = -12
(ii) Let A = \(\begin{vmatrix}0 & 1 & 2\\-1 & 0 & -3\\-2 & 3 & 0\end{vmatrix}\)
By expanding along the first row, we have:
|A| = 3\(\begin{vmatrix}1 & -2\\3 & 1\end{vmatrix}\) + 4\(\begin{vmatrix}1 & -2\\2 & 1\end{vmatrix}\) + 5\(\begin{vmatrix}1 &1\\2 &3\end{vmatrix}\)
= 3 (1+6) + 4(1+4) + 5(3-2)
= 3 (7) + 4 (5) + 5 (1)
= 21 + 20 + 5
= 46
(iii) Let A = \(\begin{vmatrix}3 & -4 & 5\\1 & 1 & -2\\2 & 3 & 1\end{vmatrix}\)
By expanding along the first row, we have:
|A| = 0\(\begin{vmatrix}0 & -3\\3 & 0\end{vmatrix}\) - 1\(\begin{vmatrix}-1 & -3\\-2 & 0\end{vmatrix}\) + 2\(\begin{vmatrix}-1 & 0\\-2 &3\end{vmatrix}\)
= 0 – 1(0 – 6) + 2 (-3 - 0)
= -1 (-6) + 2(-3)
= 6 – 6
= 0
(iv) Let A = \(\begin{vmatrix}2 & -1 & -2\\0 & 2 & -1\\3 & -5 & 0\end{vmatrix}\)
By expanding along the first column, we have:
|A| = 2\(\begin{vmatrix}2 & -1\\-5 & 0\end{vmatrix}\) - 0\(\begin{vmatrix}-1 & -2\\-5 & 0\end{vmatrix}\) + 3\(\begin{vmatrix}-1 & -2\\2 & -1\end{vmatrix}\)
= 2(0 – 5) – 0 + 3(1 + 4)
= -10 + 15 = 5
Q6 If A = \(\begin{bmatrix}1 & 1 & -2\\2 & 1 & -3\\5 & 4 & -9\end{bmatrix}\), Find |A| Ans: Let A = \(\begin{bmatrix}1 & 1 & -2\\2 & 1 & -3\\5 & 4 & -9\end{bmatrix}\)
By expanding along the first row, we have:
|A| = 1\(\begin{vmatrix}1 & -3\\4 & -9\end{vmatrix}\) - 1\(\begin{vmatrix}2 & -3\\5 & -9\end{vmatrix}\) - 2\(\begin{vmatrix}2 & 1\\5 & 4\end{vmatrix}\)
= 1(-9 + 12) – 1(-18 + 15) -2(8 – 5)
= 1(3) – 1 (-3) – 2(3)
= 3 + 3 – 6
= 6 – 6
= 0
Q7 Find values of x, if (i) \(\begin{vmatrix}2 & 4\\2 & 1\end{vmatrix}\) = \(\begin{vmatrix}2x & 4\\6 & x\end{vmatrix}\) (ii) \(\begin{vmatrix}2 & 3\\4 & 5\end{vmatrix}\) = \(\begin{vmatrix}x & 3\\2x & 5\end{vmatrix}\) Ans: (i) \(\begin{vmatrix}2 & 4\\2 & 1\end{vmatrix}\) = \(\begin{vmatrix}2x & 4\\6 & x\end{vmatrix}\)
⇒2 x 1 – 5 x 4 = 2x x x – 6 x 4)
⇒ 2- 20 = 2x2 – 24
⇒2x2 = 6
⇒ x2 = 3
⇒ x = ±√3
(ii) \(\begin{vmatrix}2 & 3\\4 & 5\end{vmatrix}\) = \(\begin{vmatrix}x & 3\\2x & 5\end{vmatrix}\)
⇒ 2 x 5 – 3 x 4 = x x 5 – 3 x 2x
⇒10 – 12 = 5x – 6x
⇒ -2 = -x
⇒ x = 2