You are given kerosene, turpentine and water. In which of these does the light travel fastest? Use the information given in Table 10.3.
Material medium |
Refractive index |
Material medium |
Refractive index |
Air | 1.0003 | Canada Balsam |
1.53 |
Ice | 1.31 | ||
Water | 1.33 | Rock salt | 1.54 |
Alcohol | 1.36 | ||
Kerosene | 1.44 | Carbon disulphide |
1.63 |
Fused quartz |
1.46 | ||
Turpentine oil |
1.47 | Ruby | 1.71 |
Benzene | 1.50 | Sapphire | 1.77 |
Crown glass |
1.52 | Diamond | 2.42 |
Speed of light in a medium is given by the relation for refractive index (nm). The relation
It can conclude from the relation that light will travel the slowest in the material which has the highest refractive index and travel the fastest in the material which has the lowest refractive index. Therefore, light travels the fastest in water.
One-half of a convex lens is covered with a black paper. Will this lens produce a complete image of the object? Verify your answer experimentally. Explain your observations.
Find out, from Table 10.3, the medium having highest optical density. Also find the medium with lowest optical density.
Material medium |
Refractive index |
Material medium |
Refractive index |
Air | 1.0003 | Canada Balsam |
1.53 |
Ice | 1.31 | ||
Water | 1.33 | Rock salt | 1.54 |
Alcohol | 1.36 | ||
Kerosene | 1.44 | Carbon disulphide |
1.63 |
Fused quartz |
1.46 | ||
Turpentine oil |
1.47 | Ruby | 1.71 |
Benzene | 1.50 | Sapphire | 1.77 |
Crown glass |
1.52 | Diamond | 2.42 |
Table 10.3 Absolute refractive index of some material media
An object 5 cm in length is held 25 cm away from a converging lens of focal length 10 cm. Draw the ray diagram and find the position, size and the nature of the image formed.
An object 5.0 cm in length is placed at a distance of 20 cm in front of a convex mirror of radius of curvature 30 cm. Find the position of the image, its nature and size.
A convex lens forms a real and inverted image of a needle at a distance of 50 cm from it. Where is the needle placed in front of the convex lens if the image is equal to the size of the object? Also, find the power of the lens.
Define 1 dioptre of power of a lens.
Find the focal length of a lens of power – 2.0 D. What type of lens is this?
Find the focal length of a convex mirror whose radius of curvature is 32 cm.
The magnification produced by a plane mirror is +1. What does this mean?
Name the type of mirror used in the following situations.
(a) Headlights of a car.
(b) Side/rear-view mirror of a vehicle.
(c) Solar furnace.
Support your answer with reason.
Did Döbereiner’s triads also exist in the columns of Newlands’ Octaves? Compare and find out.
What is a good source of energy?
Why is diffusion insufficient to meet the oxygen requirements of multi-cellular organisms like humans?
What are trophic levels? Give an example of a food chain and state the different trophic levels in it.
What changes can you make in your habits to become more environment-friendly?
What is the difference between a reflex action and walking?
What is the importance of DNA copying in reproduction?
If a trait A exists in 10% of a population of an asexually reproducing species and a trait B exists in 60% of the same population, which trait is likely to have arisen earlier?
Why should a magnesium ribbon be cleared before burning in air?
You have been provided with three test tubes. One of them contains distilled water and the other two contain an acidic solution and a basic solution, respectively. If you are given only red litmus paper, how will you identify the contents of each test tube?
Explain the following terms with one example each.
(a) Corrosion
(b) Rancidity
How do we detect the smell of an agarbatti (incense stick)?
Give two important uses of washing soda and baking soda.
Let the resistance of an electrical component remains constant while the potential difference across the two ends of the component decreases to half of its former value. What change will occur in the current through it?
Why does menstruation occur?
What is a good fuel?
An electric lamp of 100 Ω, a toaster of resistance 50 Ω, and a water filter of resistance 500 Ω are connected in parallel to a 220 V source. What is the resistance of an electric iron connected to the same source that takes as much current as all three appliances, and what is the current through it?
The values of current I flowing in a given resistor for the corresponding values of potential difference V across the resistor are given below –
I (amperes) 0.5 1.0 2.0 3.0 4.0
V (volts) 1.6 3.4 6.7 10.2 13.2
Plot a graph between V and I and calculate the resistance of that resistor.
Why don’t two magnetic field lines intersect each other?
What is the far point and near point of the human eye with normal vision?