Show that any positive odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.
Let a be any positive integer b = 6. Then by Euclid’s algorithm,
a = 6q + r for some integer q ≥ 0
So, values of r we get, r = 0, 1, 2, 3, 4, 5
When, r = 0, then, a = 6q + 0,
similarly for r = 1, 2, 3, 4, 5 the value of a is 6q+1, 6q+2, 6q+3, 6q+4 and 6q+5 respectively.
If a = 6q, 6q+2, 6q+4, then a is even and divisible by 2.
Therefore, any positive odd integer is in the form of 6q+1, 6q+3, 6q+5
Where q is some integer.
Prove that 3 + 2√5 is irrational.
Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:
Find the LCM and HCF of the following pairs of integers and verify that LCM × HCF = product of the two numbers.
(i) 26 and 91 (ii) 510 and 92 (iii) 336 and 54
Write down the decimal expansions of those rational numbers in Question 1 above which have terminating decimal expansions.
Check whether 6n can end with the digit 0 for any natural number n.
Prove that √5 is irrational.
Given that HCF (306, 657) = 9, find LCM (306, 657).
The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form , p/q what can you say about the prime factors of q?
Use Euclid’s division algorithm to find the HCF of :
(i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 255
An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?
The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.
A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig. 9.11).
Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’t this interesting?) Represent this situation algebraically and graphically.
Complete the following statements:
(i) Probability of an event E + Probability of the event ‘not E’ = .
(ii) The probability of an event that cannot happen is . Such an event is called .
(iii) The probability of an event that is certain to happen is . Such an event is called .
(iv) The sum of the probabilities of all the elementary events of an experiment is .
(v) The probability of an event is greater than or equal to and less than or equal to .
Check whether the following are quadratic equations :
(i) (x + 1)2 = 2(x – 3) (ii) x2 – 2x = (–2) (3 – x) (iii) (x – 2)(x + 1) = (x – 1)(x + 3) (iv) (x – 3)(2x +1) = x(x + 5)
(v) (2x – 1)(x – 3) = (x + 5)(x – 1) (vi) x2+ 3x + 1 = (x – 2)2 (vii) (x + 2)3 = 2x (x2 – 1) (viii) x3 – 4x2 – x + 1 = (x – 2)3
How many tangents can a circle have?
A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.
The coach of a cricket team buys 3 bats and 6 balls for ` 3900. Later, she buys another bat and 3 more balls of the same kind for ` 1300. Represent this situation algebraically and geometrically.
Which of the following experiments have equally likely outcomes? Explain.
(i) A driver attempts to start a car. The car starts or does not start.
(ii) A player attempts to shoot a basketball. She/he shoots or misses the shot.
(iii) A trial is made to answer a true-false question. The answer is right or wrong.
(iv) A baby is born. It is a boy or a girl.
Represent the following situations in the form of quadratic equations :
(i) The area of a rectangular plot is 528 m2. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
(ii) The product of two consecutive positive integers is 306. We need to find the integers.
(iii) Rohan’s mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan’s present age.
(iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.
The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.
The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.
Solve 2x + 3y = 11 and 2x – 4y = – 24 and hence find the value of ‘m’ for which y = mx + 3.
If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then ∠ POA is equal to
(A) 50° (B) 60°
(C) 70° (D) 80°
How many tangents can a circle have?
A die is thrown twice. What is the probability that
(i) 5 will not come up either time? (ii) 5 will come up at least once?
[Hint : Throwing a die twice and throwing two dice simultaneously are treated as the same experiment]
Find two consecutive positive integers, sum of whose squares is 365.
Is it possible to design a rectangular park of perimeter 80 m and area 400 m2? If so, find its length and breadth.
Is the following situation possible? If so, determine their present ages.
The sum of the ages of two friends is 20 years. Four years ago, the product of their ages in years was 48.
A die is numbered in such a way that its faces show the numbers 1, 2, 2, 3, 3, 6. It is thrown two times and the total score in two throws is noted. Complete the following table which gives a few values of the total score on the two throws:
What is the probability that the total score is
(i) even? (ii) 6? (iii) at least 6?