Use Euclid’s division algorithm to find the HCF of :
(i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 255
(i) Here, we have to find H.C.F of 135 and 225
First divide divide the larger integer smaller integer
Since, 225 > 135
Therefore, by Euclid’s Division algorithm
225 = 135 × 1 + 90 (i)
Here 90 ≠ 0, so proceed the same procedure further
Again by E.D.L, (E.D.L = Euclid’s division algorithm)
135 = 90 × 1 + 45 (ii)
As we know, 45 ≠ 0 therefore, again by E.D.L
90 = 45 × 2 + 0 (iii)
Here, r = 0 so we cannot proceed further. The divisor at this Stage is 45.
From (i), (ii) and (iii)
H.C.F (225, 135) = H.C.F (135, 90) = H.C.F (90, 45) = 45.
(ii) Here, we have to find H.C.F of 38220 and 196
First divide the larger integer smaller integer
Since, 3822 > 196
Therefore by Euclid’s Division Algorithm
38220 = 196 × 195 + 0
Here, r = 0 so we cannot proceed further. The divisor at this Stage is 196.
Hence, H.C.F (38220, 196) = 196.
(iii) Here, we have to find H.C.F of 867 and 255
First divide the larger integer smaller integer
Since, 867 > 255
Therefore, by Euclid’s Division algorithm
867 = 255 × 3 + 102 (i)
Remainder 102 ≠ 0, so proceed the same procedure further using E.D.L
255 = 102 × 2 + 51 (ii)
Here, 51 ≠ 0 again using E.D.L = 51 × 2
102 = 51 × 2 + 0 (iii)
Here, r = 0 so we cannot proceed further. The divisor at this Stage is 51.
From (i), (ii) and (iii)
H.C.F (867, 255) = H.C.F (255, 102) = H.C.F (102, 51) = 51.
Prove that 3 + 2√5 is irrational.
Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:
Find the LCM and HCF of the following pairs of integers and verify that LCM × HCF = product of the two numbers.
(i) 26 and 91 (ii) 510 and 92 (iii) 336 and 54
Write down the decimal expansions of those rational numbers in Question 1 above which have terminating decimal expansions.
Check whether 6n can end with the digit 0 for any natural number n.
Prove that √5 is irrational.
Given that HCF (306, 657) = 9, find LCM (306, 657).
The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form , p/q what can you say about the prime factors of q?
An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?
Express each number as a product of its prime factors:
(i) 140 (ii) 156 (iii) 3825 (iv) 5005 (v) 7429
The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.
A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig. 9.11).
Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’t this interesting?) Represent this situation algebraically and graphically.
Complete the following statements:
(i) Probability of an event E + Probability of the event ‘not E’ = .
(ii) The probability of an event that cannot happen is . Such an event is called .
(iii) The probability of an event that is certain to happen is . Such an event is called .
(iv) The sum of the probabilities of all the elementary events of an experiment is .
(v) The probability of an event is greater than or equal to and less than or equal to .
Check whether the following are quadratic equations :
(i) (x + 1)2 = 2(x – 3) (ii) x2 – 2x = (–2) (3 – x) (iii) (x – 2)(x + 1) = (x – 1)(x + 3) (iv) (x – 3)(2x +1) = x(x + 5)
(v) (2x – 1)(x – 3) = (x + 5)(x – 1) (vi) x2+ 3x + 1 = (x – 2)2 (vii) (x + 2)3 = 2x (x2 – 1) (viii) x3 – 4x2 – x + 1 = (x – 2)3
How many tangents can a circle have?
A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.
The coach of a cricket team buys 3 bats and 6 balls for ` 3900. Later, she buys another bat and 3 more balls of the same kind for ` 1300. Represent this situation algebraically and geometrically.
Which of the following experiments have equally likely outcomes? Explain.
(i) A driver attempts to start a car. The car starts or does not start.
(ii) A player attempts to shoot a basketball. She/he shoots or misses the shot.
(iii) A trial is made to answer a true-false question. The answer is right or wrong.
(iv) A baby is born. It is a boy or a girl.
Represent the following situations in the form of quadratic equations :
(i) The area of a rectangular plot is 528 m2. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
(ii) The product of two consecutive positive integers is 306. We need to find the integers.
(iii) Rohan’s mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan’s present age.
(iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.
A die is numbered in such a way that its faces show the numbers 1, 2, 2, 3, 3, 6. It is thrown two times and the total score in two throws is noted. Complete the following table which gives a few values of the total score on the two throws:
What is the probability that the total score is
(i) even? (ii) 6? (iii) at least 6?
A piggy bank contains hundred 50p coins, fifty Rs 1 coins, twenty Rs 2 coins and ten Rs 5 coins. If it is equally likely that one of the coins will fall out when the bank is turned upside down, what is the probability that the coin (i) will be a 50 p coin ? (ii) will not be Rs 5 coin?
Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.
A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.
A game consists of tossing a one rupee coin 3 times and noting its outcome each time. Hanif wins if all the tosses give the same result i.e., three heads or three tails, and loses otherwise. Calculate the probability that Hanif will lose the game.
A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joing this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see Fig. 9.12). Find the height of the tower and the width of the canal.
On dividing x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were x – 2 nd –2x + 4, respectively. Find g(x).
Find the nature of the roots of the following quadratic equations. If the real roots exist, find them:
(i) 2x2 – 3x + 5 = 0 (iii) 2x2– 6x + 3 = 0
If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then ∠ POA is equal to
(A) 50° (B) 60°
(C) 70° (D) 80°