Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) x2 – 2x – 8 (ii) 4s2 – 4s + 1 (iii) 6x2 – 3 – 7x (iv) 4u2 + 8u (v) t2 – 15 (vi) 3x2 – x – 4
(i) x2 – 2x – 8
= x – 4x + 2x – 8
= x(x – 4) + 2(x – 4)
= (x + 2) (x – 4)
The value of x2 – 2x – 8 is zero if (x + 2) = 0 and (x – 4) = 0
x = -2 or x = 4
Sum of zeroes = (-2 + 4) = 2 = - coefficient of x
coefficient of x2
Product of zeroes = (-2) × 4 = -8 = Constant term
coefficient of x2
(ii) 4s2 – 4s + 1
= 4s2 – 2s – 2s + 1
= 2s (2s – 1) – 1 (2s – 1)
= ( 2s – 1 ) ( 2s – 1 )
The value of 4s2 – 4s + 1 is zero , if (2s-1) = 0 and (2s-1 ) = 0
s = 1/2 , 1/2
Sum of zeroes = (1/2 + 1/2) = 1 - coefficient of x
coefficient of x2
Product of zeroes =1/2 × 1/2 = 1/4 = constant term
coefficient of x2
(iii) 6x2 –7x – 3
= 6x – 9x + 2x – 3
= 3x (2x – 3) + 1(2x – 3)
= (3x + 1) (2x – 3)
The value of 6x2 –7x – 3 is zero, if (3x + 1) = 0 and (2x – 3) = 0
X = -1 /3 , 3/2
Sum of zeroes = ( -1/3 + 3/2) = 7/6 = - coefficient of x
coefficient of x2
Product of zeroes = -1/3 × 3/2 = -3/2 = constant term
coefficient of x2
(iv) 4u2+8u
4u(u+2)
The value of 4u2+8u is zero, if 4u = 0 and (u+2) =0
u = 0, - 2
Sum of zeroes = ( 0+ (-2)) = -2 = - coefficient of x
coefficient of x2
Product of zeroes = (-2) × 0 = 0 = constant term
coefficient of x2
(v)
(vi)
3x2–x–4
3x – 4x + 3x – 4
= x (3x – 4) + 1 (3x – 4)
The value of 3x – x + 4 is zero, if (3x – 4) = 0 and (x + 1) = 0
Sum of zeroes = [4/3 + ( -1)] = 1/3 = - coefficient of x
coefficient of x2
Product of zeroes = (-1) × 4/3 = -4/3 = constant term
coefficient of x2
Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.
Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) t2 – 3, 2t4 + 3t3 – 2t2 – 9t – 12
(ii) x2 + 3x + 1, 3x4 + 5x3 – 7x2 + 2x + 2
(iii) x3 – 3x + 1, x5 – 4x3 + x2 + 3x + 1
Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :
(i) p(x) = x3 – 3x2 + 5x – 3, g(x) = x2 – 2 (ii) p(x) = x4 – 3x2 + 4x + 5, g(x) = x2 + 1 – x (iii) p(x) = x4 – 5x + 6, g(x) = 2 – x2
On dividing x3 – 3x2 + x + 2 by a polynomial g(x), the quotient and remainder were x – 2 nd –2x + 4, respectively. Find g(x).
Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, –7, –14 respectively.
Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
(i) deg p(x) = deg q(x) (ii) deg q(x) = deg r(x) (iii) deg r(x) = 0
If the polynomial x4 – 6x3 + 16x2 – 25x + 10 is divided by another polynomial x2 – 2x + k, the remainder comes out to be x + a, find k and a.
Use Euclid’s division algorithm to find the HCF of :
(i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 255
A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30° (see Fig. 9.11).
Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’t this interesting?) Represent this situation algebraically and graphically.
Complete the following statements:
(i) Probability of an event E + Probability of the event ‘not E’ = .
(ii) The probability of an event that cannot happen is . Such an event is called .
(iii) The probability of an event that is certain to happen is . Such an event is called .
(iv) The sum of the probabilities of all the elementary events of an experiment is .
(v) The probability of an event is greater than or equal to and less than or equal to .
Check whether the following are quadratic equations :
(i) (x + 1)2 = 2(x – 3) (ii) x2 – 2x = (–2) (3 – x) (iii) (x – 2)(x + 1) = (x – 1)(x + 3) (iv) (x – 3)(2x +1) = x(x + 5)
(v) (2x – 1)(x – 3) = (x + 5)(x – 1) (vi) x2+ 3x + 1 = (x – 2)2 (vii) (x + 2)3 = 2x (x2 – 1) (viii) x3 – 4x2 – x + 1 = (x – 2)3
How many tangents can a circle have?
Show that any positive odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.
A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.
The coach of a cricket team buys 3 bats and 6 balls for ` 3900. Later, she buys another bat and 3 more balls of the same kind for ` 1300. Represent this situation algebraically and geometrically.
Which of the following experiments have equally likely outcomes? Explain.
(i) A driver attempts to start a car. The car starts or does not start.
(ii) A player attempts to shoot a basketball. She/he shoots or misses the shot.
(iii) A trial is made to answer a true-false question. The answer is right or wrong.
(iv) A baby is born. It is a boy or a girl.
Find the LCM and HCF of the following integers by applying the prime factorisation method.
(i) 12, 15 and 21 (ii) 17, 23 and 29 (iii) 8, 9 and 25
A die is numbered in such a way that its faces show the numbers 1, 2, 2, 3, 3, 6. It is thrown two times and the total score in two throws is noted. Complete the following table which gives a few values of the total score on the two throws:
What is the probability that the total score is
(i) even? (ii) 6? (iii) at least 6?
Find the LCM and HCF of the following pairs of integers and verify that LCM × HCF = product of the two numbers.
(i) 26 and 91 (ii) 510 and 92 (iii) 336 and 54
Refer to Example 13. (i) Complete the following table:
(ii) A student argues that ‘there are 11 possible outcomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Therefore, each of them has a probability
Do you agree with this argument? Justify your answer.
The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.
Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, ind the sides of the two squares.
Suppose you drop a die at random on the rectangular region shown in Fig. 15.6. What is the probability that it will land inside the circle with diameter 1m?
Solve the following pair of linear equations by the substitution method.
Which of the following arguments are correct and which are not correct? Give reasons for your answer.
(i) If two coins are tossed simultaneously there are three possible outcomes—two heads, two tails or one of each. Therefore, for each of these outcomes, the probability is 1/3.
(ii) If a die is thrown, there are two possible outcomes—an odd number or an even number. Therefore, the probability of getting an odd number is 1/2.
The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.