Q1 |
A Mendelian experiment consisted of breeding tall pea plants bearing violet flowers with short pea plants bearing white flowers. The progeny all bore violet flowers, but almost half of them were short. This suggests that the genetic make-up of the tall parent can be depicted as
(a) TTWW
(b) TTww
(c) TtWW
(d) TtWw |
Ans: |
(c) TtWW
According to the law of dominance, Mendel showed that the one allele is dominant over the another one (expressed allele is known as dominant allele or unexpressed one is recessive). As shown in this question, the all progeny bears violet flowers but half of them are short, this means that the violet colour flowers are dominant and the dwarf flower which contains white flower is a recessive trait. |
|
Q2 |
An example of homologous organs is
(a) our arm and a dog’s fore-leg.
(b) our teeth and an elephant’s tusks.
(c) potato and runners of grass.
(d) all of the above. |
Ans: |
(d) all of the above
All of the above pairs are the examples of homologous organs which have similar basic structure but do not perform the same functions. |
|
Q3 |
In evolutionary terms, we have more in common with
(a) a Chinese school-boy.
(b) a chimpanzee.
(c) a spider.
(d) a bacterium. |
Ans: |
(a) a Chinese school-boy
We have more in common with the Chinese school- boy cause we belong to the same species according to our evolution, i.e, Homo sapiens. Some variations can be seen in their physical appearance or in their behaviour this is only because of the environmental changes. |
|
Q4 |
A study found that children with light-coloured eyes are likely to have parents with light-coloured eyes. On this basis, can we say anything about whether the light eye colour trait is dominant or recessive? Why or why not? |
Ans: |
On the basis of the above information, we cannot say that light eye colour is a dominant trait or a recessive trait. The light eye colour trait can be dominant or as well as may be recessive. If the child has LL genotype, parents could have light coloured eyes with homozygous LL genotype. And, if the child has ll genotype, parents could have light coloured eyes with homozygous ll. So, as a conclusion we cannot find that light coloured eyes traits can be dominant or recessive, for this we should have at least data of three generations. |
|
Q5 |
How are the areas of study – evolution and classification – interlinked? |
Ans: |
Study of evolution and classification are interlinked. We can find the evolutionary relationships by identifying the hierarchy of the characteristics (these are the details of appearance and the behaviour) between the two species which shows the evolution. Classification shows the similarities among the two species which allows us to group them and then do the study of them, with the sharing of their common ancestor. The more similar characters are between two species, more closely they seem to be related with sharing of common ancestor. As shown in the given example in the book, A brother and sister are closely related, having the common ancestors before them, i.e, their parents. Their cousin and the girl are related but less if we compared them to the real brother and sister. This is due to cousins having common ancestors, their grandparents. That is how we can relate the classification of the species to the evolutionary relationship. |
|
Q6 |
Explain the terms analogous and homologous organs with examples. |
Ans: |
Homologous organs are the organ whose origin is similar (or are embryologically similar) but perform different functions. Such as the forelimbs of humans and the wings of birds look different externally but their skeletal structure is similar. It means that their origin is similar (as wings in birds are modifications of the forearm) but functions are different - the wings help in flight whereas human forearms help in various activities.
Analogous organs, on the other hand, are those organs that have different origins but perform similar functions.such as, the wings of a bird and a bat are similar in function but does not mean that these animals are closely related. wings of a bat are the folds of skin that are stretched between its fingers whereas the wings of birds are present all along the arm, these organs are analogous organs.
|
|
Q7 |
Outline a project which aims to find the dominant coat colour in dogs. |
Ans: |
Dogs have different coats. In order to find dominant coat (hair) colour in dogs, select a pure- bred of male and female dog having black colour or pure- bred of male and female having brown colour. Cross the homozygous male BB and homozygous female bb, and then observe the coat colour in dog progeny (offspring). If all progeny have black colour, this means that black colour will be the dominant coat colour in dogs and if progeny will have brown colour then the brown colour will be dominant coat colour.
And, by making the punnett square of F1 generation, we will get Bb, Bb, Bb, Bb ,i.e, all progeny are showing the black colour. So, it is concluded that the dominant colour is black. |
|
Q8 |
Explain the importance of fossils in deciding evolutionary relationships. |
Ans: |
Fossils are formed during the formation of sedimentary rocks, dead animals of the sea and the lakes, rivers when they sink down and get buried in the rocks. When there is no oxygen, they prevent the decay of an animal. The animals then preserved in the rocks, which form the fossils. The hard matter remains of the dead animals preserved layer by layer in the sedimentary rocks. The deeper layer had more older fossils and the upper layer had more recent fossils. Palaeontology is the study of past life based on the fossil records. Palaeontology furnishes the evidence for the evolution which tells about the organism that lives in today’s time or that lived in the past and how they originated by showing the fossil records. Ages of the fossils can be determined by some methods like relative dating method, absolute dating method etc. By which age of fossils determine how long they have been in the evolutionary relationships. |
|
Q9 |
What evidence do we have for the origin of life from inanimate matter? |
Ans: |
Abiogenesis is the generation of life from the inorganic matter. Many scientists gave the theory of origin of life from the non living matter. Then, at last Stanley L. Miller and Harold C. Urey gave the experiment to demonstrate the origin of life from inanimate matter.
Miller and Urey set up an experiment to derive life from inorganic matter to organic. He introduced Methane, Hydrogen and ammonia gases by providing the moist environment above the water containing flask. Then, Miller gave the system an electric current. After a few days he found that flask contained organic compounds and those compounds were amino acids which served as the building block elements of the proteins. By the chromatographic analysis, he confirmed the formation of amino acids. That’s how life originated from the non- living matter. |
|
Q10 |
Explain how sexual reproduction gives rise to more viable variations than asexual reproduction. How does this affect the evolution of those organisms that reproduce sexually? |
Ans: |
This is true that sexual reproduction give rise to more variations than asexual reproduction.
-
Sexual reproduction is responsible for evolution because these two parents are involved in forming a zygote by sharing their equal amount of genetic material to the offspring that confers a variation. More viable variations occur because error can occur in copying of DNA where mutations occur but this is very rare.
-
Sexual reproduction provides infinite chances of the new combinations of existing traits in two steps:- first, by the segregation (the formation of gametes by random separation of paternal or maternal chromosomes into the daughter cells. And second, at the time of fertilization by random fusion of male and female gametes to form a zygote.
And in case of asexual reproduction,
-
Unlike sexual reproduction, Asexual reproduction is not responsible for the evolution because in this type of reproduction process only one parent is involved to form the daughter cells. Very small or we can say no changes or variations occur in the progeny because the offsprings they gave arise are identical to the parent. And the division process is also different in this, it can occur through budding, binary or multiple fission.
So, we can say that sexual reproduction give rise to more viable variations than asexual reproduction. |
|
Q11 |
How is the equal genetic contribution of male and female parents ensured in the progeny? |
Ans: |
Equal genetic contribution of male and female parents is ensured by the equal number of inheritance of chromosomes. Human beings possess a normal diploid (2N) chromosome number in human beings is 46. Each body cell contains 23 pairs of chromosomes, with 22 pairs of autosomes and one pair of sex chromosome. The autosomes are similar in male and female but one sex chromosome is different in both. In females, sex chromosomes are same XX and heteromorphic in males, i.e, XY. Sex chromosomes control the sex of an individual. One male haploid gamete and one female haploid gamete form a diploid cell gamete by sharing equal amounts of genetic material from both paternal and maternal parents. If the zygote receives one X chromosome from a female and another X chromosome from male then the child will be female, i.e, XX. And when the zygote receives one X chromosome from a female and another Y chromosome from male then the child will be male. |
|
Q12 |
Only variations that confer an advantage to an individual organism will survive in a population. Do you agree with this statement? Why or why not? |
Ans: |
Variations are the difference among the individuals of species or their offsprings. We are agreeable to this statement that only variations can confer an advantage to an individual organism that will survive in a population. Not all living organisms have equal chances of survival in the environment. The living organisms must change their characters or adapt their characters according to the changing environment, and those who will not adapt, they will not survive. So, the chances of survival only depend on the variations in environment. |
|