Welcome to the Chapter 4 - Quadratic Equations, Class 10 Mathematics - NCERT Solutions page. Here, we provide detailed question answers for Chapter 4 - Quadratic Equations.The page is designed to help students gain a thorough understanding of the concepts related to natural resources, their classification, and sustainable development.
Our solutions explain each answer in a simple and comprehensive way, making it easier for students to grasp key topics Solving quadratic equations by factorization and quadratic formula, discriminant and nature of roots and excel in their exams. By going through these Quadratic Equations question answers, you can strengthen your foundation and improve your performance in Class 10 Mathematics. Whether you're revising or preparing for tests, this chapter-wise guide will serve as an invaluable resource.
Download PDF - Chapter 4 Quadratic Equations - Class 10 Mathematics
Download PDF - NCERT Examplar Solutions - Chapter 4 Quadratic Equations - Class 10 Mathematics
Is the following situation possible? If so, determine their present ages.
The sum of the ages of two friends is 20 years. Four years ago, the product of their ages in years was 48.
A cottage industry produces a certain number of pottery articles in a day. It was observed on a particular day that the cost of production of each article (in rupees) was 3 more than twice the number of articles produced on that day. If the total cost of production on that day was Rs 90, find the number of articles produced and the cost of each article.
Find two consecutive positive integers, sum of whose squares is 365.
Find the nature of the roots of the following quadratic equations. If the real roots exist, find them:
(i) 2x2 – 3x + 5 = 0 (iii) 2x2– 6x + 3 = 0
Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) x2 – 2x – 8 (ii) 4s2 – 4s + 1 (iii) 6x2 – 3 – 7x (iv) 4u2 + 8u (v) t2 – 15 (vi) 3x2 – x – 4
Find two numbers whose sum is 27 and product is 182.
Refer to Example 13. (i) Complete the following table:
(ii) A student argues that ‘there are 11 possible outcomes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12. Therefore, each of them has a probability
Do you agree with this argument? Justify your answer.
Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.
The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.
Find the values of k for each of the following quadratic equations, so that they have two equal roots.
(i) 2x2 + kx + 3 = 0 (ii) kx (x – 2) + 6 = 0
Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:
The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form , p/q what can you say about the prime factors of q?
Two water taps together can fill a tank in hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.
From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.
A lot consists of 144 ball pens of which 20 are defective and the others are good. Nuri will buy a pen if it is good, but will not buy if it is defective. The shopkeeper draws one pen at random and gives it to her. What is the probability that
(i) She will buy it ?
(ii) She will not buy it ?
Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, ind the sides of the two squares.
Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.