Show that all the diagonal elements of a skew symmetric matrix are zero.
Let A = [aij] n × n be skew symmetric matrix
A is skew symmetric
∴ A = –A/
⇒ aij = –aji ∀ i, j
For diagonal elements i = j,
⇒ 2aii = 0
⇒ aii = 0
⇒ diagonal elements are zero.
In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.
(i) f : R → R defined by f(x) = 3 – 4x
(ii) f : R → R defined by f(x) = 1 + x2
Show that the Modulus Function f : R → R, given by f(x) = |x|, is neither oneone nor onto, where | x | is x, if x is positive or 0 and |x| is – x, if x is negative.
Prove that the Greatest Integer Function f : R → R, given by f(x) = [x], is neither one-one nor onto, where [x] denotes the greatest integer less than or equal to x.
Show that the Signum Function f : R → R, given by
is neither one-one nor onto.
Let f, g and h be functions from R to R. Show that
(f + g)oh = foh + goh
(f . g)oh = (foh) . (goh)